2022年教师资格之中学数学学科知识与教学能力历年试题_第1页
2022年教师资格之中学数学学科知识与教学能力历年试题_第2页
2022年教师资格之中学数学学科知识与教学能力历年试题_第3页
2022年教师资格之中学数学学科知识与教学能力历年试题_第4页
2022年教师资格之中学数学学科知识与教学能力历年试题_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年教师资格之中学数学学科知识与教学能力历年试题单选题(共100题)1、下列内容属于《义务教育数学课程标准(2011年版)》第三学段“数与式”的是()。A.①②③④B.①②④⑤C.①③④⑤D.①②③⑤【答案】C2、新课程标准将义务教育阶段的数学课程目标分为()。A.过程性目标和结果性目标B.总体目标和学段目标C.学段目标和过程性目标D.总体目标和结果性目标【答案】B3、肌动蛋白(actin)细丝存在于A.微丝B.致密颗粒C.α颗粒D.溶酶体颗粒E.微管【答案】A4、下列划分正确的是()。A.有理数包括整数、分数和零B.角分为直角、象限角、对顶角和同位角C.数列分为等比数列、等差数列、无限数列和递减数列D.平行四边形分为对角线互相垂直的平行四边形和对角线不互相垂直的平行四边形【答案】D5、免疫球蛋白含量按由多到少的顺序为A.IgG,IgM,IgD,IgE,IgAB.IgG,IgA,IgM,lgD,IgEC.lgG,IgD,lgA,IgE,IgMD.IgD,IgM,IgG,IgE,IgAE.IgG,IgM,IgD,IgA,IgE【答案】B6、红细胞镰状变形试验用于诊断下列哪种疾病A.HbFB.HbSC.HbHD.HbE.HbBArts【答案】B7、荧光着色主要在核仁区,分裂期细胞染色体无荧光着色的是A.均质型B.斑点型C.核膜型D.核仁型E.以上均不正确【答案】D8、解二元一次方程组用到的数学方法主要是()。A.降次B.放缩C.消元D.归纳【答案】C9、女,19岁,反复发热、关节痛半月余,掌指、指及指间关节肿胀。免疫学检查IgG略有升高,RF880U/ml,抗环状瓜氨酸肽(抗CCP抗体)阳性,此患者可诊断为A.多发性骨髓瘤B.系统性红斑狼疮C.干燥综合征D.类风湿关节炎E.皮肌炎【答案】D10、下列哪种物质是血小板膜上的纤维蛋白原受体A.GPⅡb/ⅢaB.GPIVC.GPVD.GPb-复合物E.GPIa【答案】A11、男性,29岁,发热半个月。体检:两侧颈部淋巴结肿大(约3cm×4cm),肝肋下2cm,脾肋下2.5cm,胸骨压痛,CT显示后腹膜淋巴结肿大。检验:血红蛋白量85g/L,白细胞数3.5×10A.多发性骨髓瘤B.急性白血病C.恶性淋巴瘤D.传染性单核细胞增多症E.骨髓增生异常综合征【答案】C12、《义务教育数学课程标准(2011年版)》提出,“数感”感悟的对象是()。A.数与量、数量关系、口算B.数与量、数量关系、笔算C.数与量、数量关系、简便运算D.数与量、数量关系、运算结果估计【答案】D13、下列哪一项不是溶血性贫血的共性改变()A.血红蛋白量减少B.网织红细胞绝对数减少C.红细胞寿命缩短D.尿中尿胆原增高E.血清游离血红蛋白升高【答案】B14、纤溶酶的主要作用是水解()A.因子ⅤB.因子ⅡaC.因子ⅫD.因子Ⅰ和ⅠaE.因子Ⅳ【答案】D15、某男,42岁,建筑工人,施工时不慎与硬物碰撞,皮下出现相互融合的大片淤斑,后牙龈、鼻腔出血,来院就诊。血常规检查,血小板计数正常,凝血功能筛查实验APTT、PT、TT均延长,3P试验阴性,D-二聚体正常,优球蛋白溶解时间缩短,血浆FDP增加,PLC减低。该患者主诉自幼曾出现轻微外伤出血的情况。该患者最可能的诊断是A.血友病B.遗传性血小板功能异常症C.肝病D.原发性纤溶亢进症E.继发性纤溶亢进症【答案】D16、细胞因子诱导产物测定法目前最常用于测定A.IL-1B.INFC.TNFD.IL-6E.IL-8【答案】A17、肝素酶存在于A.微丝B.致密颗粒C.α颗粒D.溶酶体颗粒E.微管【答案】D18、患者发热,巨脾,白细胞26×10A.急性粒细胞白血病B.急性淋巴细胞白血病C.慢性粒细胞白血病D.嗜碱性粒细胞白血病E.以上都对【答案】B19、βA.淋巴细胞B.成熟红细胞C.胎盘滋养层细胞D.上皮细胞E.神经细胞【答案】A20、关于骨髓纤维化下列说法不正确的是A.脾大B.原发性骨髓纤维化,也可Ph染色体阳性C.末梢血可出现幼红/粒细胞。D.早期WBC增多E.骨髓穿刺常见干抽【答案】B21、肾上腺素试验是反映粒细胞的A.分布情况B.储备情况C.破坏情况D.消耗情况E.生成情况【答案】A22、乙酰胆碱是A.激活血小板物质B.舒血管物质C.调节血液凝固物质D.缩血管物质E.既有舒血管又能缩血管的物质【答案】B23、重症肌无力在损伤机制上属于()A.细胞免疫功能缺陷B.Ⅱ型超敏反应C.体液免疫功能低下D.巨噬细胞缺陷E.NK细胞活性低下【答案】B24、光学法包括A.光学法B.黏度法C.电流法D.透射比浊法和散射比浊法E.以上都是【答案】D25、患者,男,51岁。尿频、尿痛间断发作2年,下腹隐痛、肛门坠胀1年。查体:肛门指诊双侧前列腺明显增大、压痛、质偏硬,中央沟变浅,肛门括约肌无松弛。前列腺液生化检查锌含量为1.76mmol/L,B超显示前列腺增大。肿瘤病人的机体免疫状态A.免疫防御过高B.免疫监视低下C.免疫自稳失调D.免疫耐受增强E.免疫防御低下【答案】B26、乙酰胆碱受体的自身抗体与上述有关的自身免疫病是A.慢性活动性肝炎B.抗磷脂综合征C.重症肌无力D.原发性小血管炎E.毒性弥漫性甲状腺肿(Gravesdisease)【答案】C27、属于Ⅲ型变态反应的疾病是A.类风湿关节炎B.强直性脊柱炎C.新生儿溶血症D.血清过敏性休克E.接触性皮炎【答案】A28、设随机变量X~N(0,1),X的的分布函数为φ(x),则P(|X|>2)的值为()A.2[1-φ(2)]B.2φ(2)-1C.2-φ(2)D.1-2φ(2)【答案】A29、关于PT测定下列说法错误的是A.PT测定是反映外源凝血系统最常用的筛选试验B.口服避孕药可使PT延长C.PT测定时0.109mol/L枸橼酸钠与血液的比例是1:9D.PT的参考值为11~14秒,超过正常3秒为异常E.肝脏疾病及维生素K缺乏症时PT延长【答案】B30、内源凝血途径的始动因子是下列哪一个A.ⅩB.ⅧC.因子ⅨD.ⅫE.ⅩⅢ【答案】D31、在新一轮的数学教育改革中,逐渐代替了数学教学大纲,成为数学教育指导性文件的是()。A.数学教学方案B.数学课程标准C.教学教材D.数学教学参考书【答案】B32、患者,男,51岁。尿频、尿痛间断发作2年,下腹隐痛、肛门坠胀1年。查体:肛门指诊双侧前列腺明显增大、压痛、质偏硬,中央沟变浅,肛门括约肌无松弛。前列腺液生化检查锌含量为1.76mmol/L,B超显示前列腺增大。患者最可能的诊断是A.急性前列腺炎B.慢性前列腺炎C.前列腺癌D.良性前列腺增生E.前列腺结核【答案】B33、患者,女性,30岁,3年前无明显诱因出现巩膜发黄,全身乏力,常感头昏,皮肤瘙痒,并多次出现酱油色尿。近3个月来,乏力加重,无法正常工作而入院。体格检查发现重度贫血,巩膜黄染,肝肋下2cm,脾平脐,其余未见异常。血常规显示WBC9.0×10A.肾功能测定B.肝功能测定C.LDH、总胆红素、间接胆红素、血红蛋白尿等测定D.补体测定E.红细胞沉降率测定【答案】C34、患者,女,35岁。发热、咽痛1天。查体:扁桃体Ⅱ度肿大,有脓点。实验室检查:血清ASO水平为300U/ml,10天后血清ASO水平上升到1200IU/ml。诊断:急性化脓性扁桃体。血细菌培养发现A群B溶血性链球菌阳性,尿蛋白(++),尿红细胞(++)。初步诊断为链球菌感染后急性肾小球肾炎。对诊断急性肾小球肾炎最有价值的是A.血清AS01200IU/mlB.血清肌酐18μmol/LC.血清BUN13.8mmol/LD.血清补体CE.尿纤维蛋白降解产物显著增高【答案】D35、男,30岁,受轻微外伤后,臀部出现一个大的血肿,患者既往无出血病史,其兄有类似出血症状;检验结果:血小板300×10A.ITPB.血友病C.遗传性纤维蛋白原缺乏症D.DICE.Evans综合征【答案】B36、与意大利传教士利玛窦共同翻译了《几何原本》(I-Ⅵ卷)的我国数学家是()A.徐光启B.刘徽C.祖冲之D.杨辉【答案】A37、下列关于椭圆的叙述,正确的是()。A.平面内两个定点的距离之和等于常数的动点轨迹是椭圆B.平面内到定点和定直线距离之比大于1的动点轨迹是椭圆C.从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆的另一个焦点D.平面与圆柱面的截线是椭圆【答案】C38、属于检测Ⅳ型超敏反应的试验A.Coombs试验B.结核菌素皮试C.挑刺试验D.特异性IgG抗体测定E.循环免疫复合物测定【答案】B39、义务教育课程的总目标是从()方面进行阐述的。A.认识,理解,掌握和解决问题B.基础知识,基础技能,问题解决和情感C.知识,技能,问题解决,情感态度价值观D.知识与技能,数学思考,问题解决和情感态度【答案】D40、女性,26岁,2年前因头昏乏力、面色苍白就诊。粪便镜检找到钩虫卵,经驱虫及补充铁剂治疗,贫血无明显改善。近因症状加重而就诊。体检:中度贫血貌,肝、脾均肋下2cm。检验:血红蛋白85g/L,网织红细胞5%;血清胆红素正常;骨髓检查示红系明显增生,粒红比例倒置,外铁(+++),内铁正常。B超显示胆石症。最可能的诊断是A.缺铁性贫血B.铁幼粒细胞贫血C.溶血性贫血D.巨幼细胞贫血E.慢性炎症性贫血【答案】C41、关于慢性白血病的叙述,错误的是A.以慢粒多见B.大多由急性转化而来C.慢性患者有半数以上可急性变D.慢性急性变用药物化疗无效E.慢性急性变患者大多预后不好【答案】B42、患者,男,28岁,患尿毒症晚期,拟接受肾移植手术。移植器官的最适供者是A.父母双亲B.同卵双生兄弟C.同胞姐妹D.同胞兄弟E.无关个体【答案】B43、函数f(x)在[a,b]上黎曼可积的必要条件是f(x)在[a,b]上()。A.可微B.连续C.不连续点个数有限D.有界【答案】D44、在高等代数中,有一个线性变换叫做正交变换,即不改变任意两点的距离的变换。下列变换中不是正交变换的是()。A.平移变换B.旋转变换C.反射变换D.相似变换【答案】D45、与意大利传教士利玛窦共同翻译了《几何原本》(I—Ⅵ卷)的我国数学家是()。A.徐光启B.刘徽C.祖冲之D.杨辉【答案】A46、()是在数学教学实施过程中为了查明学生在某一阶段的数学学习活动达到学习目标的程度,包括所取得的进步和存在的问题而使用的一种评价。A.诊断性评价B.形成性评价C.终结性评价D.相对评价【答案】B47、红细胞镰状变形试验用于诊断下列哪种疾病A.HbFB.HbSC.HbHD.HbE.HbBArts【答案】B48、男,45岁,因骨盆骨折住院。X线检查发现多部位溶骨性病变。实验室检查:骨髓浆细胞占25%,血沉50mm/h,血红蛋白为80g/L,尿本周蛋白阳性,血清蛋白电泳呈现M蛋白,血清免疫球蛋白含量IgG8g/L、IgA12g/L、IgM0.2g/L。如进一步对该患者进行分型,则应为A.IgG型B.IgA型C.IgD型D.IgE型E.非分泌型【答案】B49、正常人外周血经PHA刺激后,其T细胞转化率是A.10%~30%B.70%~90%C.50%~70%D.60%~80%E.30%~50%【答案】D50、对某目标进行100次独立射击,假设每次射击击中目标的概率是0.2,记X为100次独立射击击中目标的总次数,则E(X2)等于()。A.20B.200C.400D.416【答案】D51、骨髓增生极度活跃,有核细胞与成熟红细胞的比例为A.1:50B.1:1C.2:5D.1:4E.1:10【答案】B52、“三角形内角和180°”,其判断的形式是().A.全称肯定判断B.全称否定判断C.特称肯定判断D.特称否定判断【答案】A53、定量检测病人外周血免疫球蛋白常用的方法是()A.间接血凝试验B.双向琼脂扩散C.单向琼脂扩散D.外斐试验E.ELISA【答案】C54、欲了解M蛋白的类型应做A.血清蛋白区带电泳B.免疫电泳C.免疫固定电泳D.免疫球蛋白的定量测定E.尿本周蛋白检测【答案】B55、经台盼兰染色后,活细胞呈A.蓝色B.不着色C.紫色D.红色E.绿色【答案】B56、甲乙两位棋手通过五局三胜制比赛争夺1000员奖金,前三局比赛结果为甲二胜一负,现因故停止比赛,设在每局比赛中,甲乙获胜的概率都是1/2,如果按照甲乙最终获胜的概率大小分配奖金,甲应得奖金为()A.500元B.600元C.666元D.750元【答案】D57、《义务教育数学课程标准(2011年版)》提出,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和()A.探索性学习B.合作交流C.模型思想D.综合与实践【答案】C58、抗原抗体检测A.CPi-CH50B.AP-CH50C.补体结合试验D.甘露聚糖结合凝集素E.B因子【答案】C59、有限小数与无限不循环小数的关系是()。A.对立关系B.从属关系C.交叉关系D.矛盾关系【答案】A60、纤溶酶的主要作用是水解()A.因子ⅤB.因子ⅡaC.因子ⅫD.因子Ⅰ和ⅠaE.因子Ⅳ【答案】D61、数学抽象是数学的基本思想,是形成理性思维的()。A.重要基础B.重要方式C.工具D.基本手段【答案】A62、细胞核内出现颗粒状荧光,分裂期细胞染色体无荧光显示的是A.均质型B.斑点型C.核膜型D.核仁型E.以上均不正确【答案】B63、不符合溶贫骨髓象特征的是()A.骨髓增生明显活跃B.粒红比值减低C.三系显著减低D.无巨幼红细胞E.以上都是【答案】C64、NO是A.激活血小板物质B.舒血管物质C.调节血液凝固物质D.缩血管物质E.既有舒血管又能缩血管的物质【答案】B65、正常情况下血液中不存在的是A.因子ⅢB.因子ⅤC.因子ⅠD.因子ⅩE.因子Ⅸ【答案】A66、下列说法中不正确的是()。A.教学活动是教师单方面的活动,教师是学习的领导者B.评价既要关注学生学习的结果、也要重视学习的过程C.为了适应时代发展对人才培养的需要,新课程标准指出:义务教育阶段的数学教育要特别注重发展学生的应用意识和创新意识D.总体目标是义务教育阶段数学课程的终极目标,而学段目标则是总体目标的细化和学段化【答案】A67、临床表现为反复发作的皮肤黏膜水肿的是A.选择性IgA缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】C68、冷球蛋白沉淀与复溶解的温度通常为A.-20℃,4℃B.-4℃,37℃C.-4℃,0℃D.0℃,37℃E.-20℃,37℃【答案】B69、通常下列哪种疾病不会出现粒红比例减低()A.粒细胞缺乏症B.急性化脓性感染C.脾功能亢进D.真性红细胞增多症E.溶血性贫血【答案】B70、骨髓细胞形态学检查的禁忌证是A.脂质沉积病B.肝硬化患者C.脾功能亢进D.晚期妊娠的孕妇E.化疗后肿瘤患者【答案】D71、Goodpasture综合征属于A.Ⅰ型超敏反应B.Ⅱ型超敏反应C.Ⅲ型超敏反应D.Ⅳ型超敏反应E.以上均正确【答案】B72、正常人外周血经PHA刺激后,其T细胞转化率是A.10%~30%B.70%~90%C.50%~70%D.60%~80%E.30%~50%【答案】D73、在集合、三角函数、导数及其应用、平面向量和空间向量五个内容中,属于高中数学必修课程内容的有()A.1个B.2个C.3个D.4个【答案】C74、男性,30岁,常伴机会性感染,发热、咳嗽、身体消瘦,且查明患有卡氏肺孢子菌肺炎,初步怀疑为艾滋病,且HIV筛查试验为阳性结果。其确诊的试验方法选用A.ELISA法B.免疫扩散法C.免疫比浊法D.免疫印迹法E.化学发光法【答案】D75、维生素K缺乏和肝病导致凝血障碍,体内因子减少的是A.Ⅱ、Ⅶ、Ⅸ、ⅩB.Ⅱ、Ⅴ、Ⅶ、ⅩC.Ⅲ、Ⅴ、Ⅶ、ⅩD.Ⅳ、Ⅴ、Ⅶ、ⅩE.Ⅳ、Ⅶ、Ⅸ、Ⅹ【答案】A76、患者男性,60岁,贫血伴逐渐加剧的腰痛半年余,肝、脾不大,Hb85g/L,白细胞3.6×10A.原发性巨球蛋白血症B.浆细胞白血病C.多发性骨髓瘤D.尿毒症E.急淋【答案】C77、设f(x)=acosx+bsinx是R到R的函数,V={f(x)∣f(x)=acosx+bsinx,a,b∈R}是线形空间,则V的维数是()。A.1B.2C.3D.∞【答案】A78、《学记》中提出“道而弗牵,强而弗抑,开而弗达”。这体现了下列哪项教学原则?()A.启发式原则B.因材施教原则C.循序渐进原则D.巩固性原则【答案】A79、解二元一次方程组用到的数学方法主要是()。A.降次B.放缩C.消元D.归纳【答案】C80、与意大利传教士利玛窦共同翻译了《几何原本》(I-Ⅵ卷)的我国数学家是()A.徐光启B.刘徽C.祖冲之D.杨辉【答案】A81、Ⅱ型超敏反应A.由IgE抗体介导B.单核细胞增高C.以细胞溶解和组织损伤为主D.T细胞与抗原结合后导致的炎症反应E.可溶性免疫复合物沉积【答案】C82、患者,男,28岁,患尿毒症晚期,拟接受肾移植手术。兄弟间器官移植引起排斥反应的物质是A.异种抗原B.自身抗原C.异嗜性抗原D.同种异体抗原E.超抗原【答案】D83、与意大利传教士利玛窦共同翻译了《几何原本》(I—Ⅵ卷)的我国数学家是()。A.徐光启B.刘徽C.祖冲之D.杨辉【答案】A84、在学习数学和应用数学的过程中逐步形成和发展的数学学科核心素养包括:()、直观想象、数学运算、数据分析等。A.分类讨论B.数学建模C.数形结合D.分离变量【答案】B85、肌动蛋白(actin)细丝存在于A.微丝B.致密颗粒C.α颗粒D.溶酶体颗粒E.微管【答案】A86、女,20岁,反复发热、颧部红斑,血液学检查白细胞减少,淋巴细胞减少,狼疮细胞阳性,诊断为系统性红斑狼疮(SLE),下列可作为SLE特异性标志的自身抗体为A.抗DNP抗体和ANAB.抗dsDNA抗体和抗Sm抗体C.抗dsDNA抗体和ANAD.抗ssDNA抗体和抗ANAE.抗SSA抗体和抗核蛋白抗体【答案】B87、最常见的Ig缺陷病是A.选择性IgA缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】A88、5-HT存在于A.微丝B.致密颗粒C.α颗粒D.溶酶体颗粒E.微管【答案】B89、临床有出血症状且APTT正常和PT延长可见于A.痔疮B.FⅦ缺乏症C.血友病D.FⅩⅢ缺乏症E.DIC【答案】B90、最早使用“函数”(function)这一术语的数学家是()。A.约翰·贝努利B.莱布尼茨C.雅各布·贝努利D.欧拉【答案】B91、义务教育课程的总目标是从()方面进行阐述的。A.认识,理解,掌握和解决问题B.基础知识,基础技能,问题解决和情感C.知识,技能,问题解决,情感态度价值观D.知识与技能,数学思考,问题解决和情感态度【答案】D92、设a,b为非零向量,下列命题正确的是()A.a×b垂直于aB.a×b平行于aC.a·b平行于aD.a·b垂直于a【答案】A93、实验室常用的校准品属于A.一级标准品B.二级标准品C.三级标准品D.四级标准品E.五级标准品【答案】C94、()是在数学教学实施过程中为了查明学生在某一阶段的数学学习活动达到学习目标的程度,包括所取得的进步和存在的问题而使用的一种评价。A.诊断性评价B.形成性评价C.终结性评价D.相对评价【答案】B95、前列腺癌的标志A.AFPB.CEAC.PSAD.CA125E.CA15-3【答案】C96、浆细胞性骨髓瘤的诊断要点是A.骨髓浆细胞增多>30%B.高钙血症C.溶骨性病变D.肾功能损害E.肝脾肿大【答案】A97、移植排斥反应属于A.Ⅰ型超敏反应B.Ⅱ型超敏反应C.Ⅲ型超敏反应D.Ⅳ型超敏反应E.以上均正确【答案】D98、实验室常用的校准品属于A.一级标准品B.二级标准品C.三级标准品D.四级标准品E.五级标准品【答案】C99、性连锁高IgM综合征是由于()A.T细胞缺陷B.B细胞免疫功能缺陷C.体液免疫功能低下D.活化T细胞CD40L突变E.白细胞黏附缺陷【答案】D100、室间质控应在下列哪项基础上进一步实施A.愈小愈好B.先进设备C.室内质控D.在允许误差内E.质控试剂【答案】C大题(共20题)一、数学的产生与发展过程蕴含着丰富的数学文化。(1)以“勾股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文化对学生数学学习的作用。【答案】本题考查数学文化在数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。二、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要.(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的.同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背.在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性.三、在“有理数的加法”一节中,对于有理数加法的运算法则的形成过程,两位教师的一些教学环节分别如下:【教师1】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与0相加,0与0相加,负数与0相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是0,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师2】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?……讨论过程中,学生提出利用具体情境来解释运算的合理性……第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”……分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】本题考查考生对基本数学思想方法的掌握及应用。四、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要.(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的.同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背.在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性.五、在学习《有理数的加法》一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难点是什么(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】(1)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。六、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为17只,总的腿数应为34条,但现在有48条腿,造成腿的数目不够是由于小兔的数目是O,每有一只小兔便会增加两条腿,敌应有(48—17×2)÷2=7只小兔。相应地,小鸡有10只。解法二:用代数方法:可设有x只小鸡,y只小兔,则x+y=17①;2x+4y=48②。将第一个方程的两边同乘以-2加到第二个方程中去,得x+y=17;(4-2)y=48-17x2。解上述第二个方程得y=7,把y=7代入第一个方程得x=10。所以有10只小鸡.7只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10分)(2)试说明这两种算法的共同点。(10分)【答案】(1)解法一所体现的算法是:S1假设没有小兔.则小鸡应为n只;S2计算总腿数为2n只;S3计算实际总腿数m与假设总腿数2n的差值m-2n;S4计算小兔只数为(m-2n)÷2;S5小鸡的只数为n-(m-2n)÷2;解法二所体现的算法是:S1设未知数S2根据题意列方程组;S3解方程组:S4还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。七、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。【答案】八、严谨性与量力性相结合”是数学教学的基本原则。(1)简述“严谨性与量力性相结合”教学原则的内涵(3分);(2)初中数学教学中“负负得正”运算法则引入的方式有哪些?请写出至少两种(6分);(3)在初中“负负得正”运算法则的教学中,如何体现“严谨性与量力性相结合”的教学原则?(6分)【答案】本题主要考查严谨性与量力性的教学原则,以及课堂导入技巧的教学技能知识。(1)“严谨性与量力性相结合”教学原则的内涵是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。所谓数学的严谨性,就是指对数学内容结论的叙述必须精确,结论的论证必须严格、周密,整个数学内容被组织成一个严谨的逻辑系统。教材有时对有些内容避而不谈,或用直观说明,或用不完全归纳法验证,或不必说明的作了说明,或扩大公理体系等,这些做法主要是考虑到学生的可接受性,估计降低内容的严谨性,让学生更好地掌握要学的数学内容。当前数学界提出的“淡化形式,注重实质”的口号实质上也是侧面反映出数学必须坚持严谨性与量力性相结合原则的问题。(2)初中数学教学中“负负得正”运算法则引入的方式可以从生活中的负数入手,举出两个引入的方式即可。(3)在初中“负负得正”运算法则的教学中,可以根据学生的认知水平和学生接受的难易程度入手,设法安排学生逐步适应的过程与机会,然后再利用一些数学模型解析“负负得正”运算法则,从而体现“严谨性与量力性相结合”的教学原则。九、函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。(1)请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(7分)(2)请列举至少两种研究函数单调性的方法,并分别简要说明其特点。(8分)【答案】本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。一十、以《普通高中课程标准实验教科书·数学1》(必修)第一章“集合与函数概念”的设计为例,回答下列问题:(1)从分析集合语言的意义入手,说明为什么把它安排在高中数学的起始章;(6分)(2)说明高中阶段对函数概念的处理方法;(4分)(3)给出本章课程的学习目标;(8分)(4)简要给出集合主要内容的教学设计思路与方法。(12分)【答案】一十一、推理一般包括合情推理与演绎推理。(1)请分别阐述合情推理与演绎推理的含义;(6分)(2)举例说明合情推理与演绎推理在解决数学问题中的作用(6分),并阐述两者之间的关系。(3分)【答案】本题主要考查合情推理与演绎推理的概念及关系。一十二、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,……,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,…1,-1,1,-1,1,…-4,2,-1,…1,1,l,1,1,…由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】一十三、《义务教育数学课程标准(2011年版)》附录中给出了两个例子:例1.计算15×15,25×25,…,95×95,并探索规律。例2.证明例1所发现的规律。很明显例1计算所得到的乘积是一个三位数或者四位数,其中后两位数为25,而百位和千位上的数字存在这样的规律:1×2=2,2×3=6,3×4=12,…,这是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,实现“提出问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例1、例2的教学目标;(8分)(2)设计“提出问题”的主要教学过程;(8分)(3)设计“分析问题”和“解决问题”的主要教学过程;(7分)(4)设计“推广例1所探究的规律”的主要教学过程。(7分)【答案】本题主要考查考生对于新授课教学设计的能力。一十四、案例:面对课堂上出现的各种各样的意外生成,教师如何正确应对,如何让这些生成为我们高效的课堂教学服务.如何把自己课前的预设和课堂上的生成有效融合,从而实现教学效果的最大化.这是教师时刻面临的问题。在一次听课中有下面的一个教学片段:教师在介绍完中住线的概念后,布置了一个操作探究活动。师:大家把手中的三角形纸片沿其一条中位线剪开,并用剪得的纸片拼出一个四边形,由这个活动你可以得到哪些和中位线有关的结论学生正准备动手操作,一名学生举起了手。生:我不剪彩纸也知道结论。师:你知道什么结论生:三角形的中位线平行于第三边并等于第三边的一半。教师没有想到会出现这么个“程咬金”,脸冷了下来:“你怎么知道的”生:我昨天预习了,书上这么说的。师:就你聪明。坐下!后面的教学是在沉闷的气氛中进行的学生操作完成后再也不敢举手发言了。问题:(1)结合上面这位教师的教学过程,简要做出评析;(10分)(2)结合你的教学经历,说明如何处理好课堂上的意外生成。(10分)【答案】(1)在课堂上,教师面对的是一群有着不同生活经历、有自己的想法。在很多方面存在差异的生命体,也正是因为有这种差异,课堂才是充满变化、丰富多彩的,教师如果不能适应这种变化,不能及时正确处理课堂的生成,那么其课堂效果将很难保证是高效的。在上面的教学片段中教师对学生直接说出中位线的性质很是不满,因为这样一来教师后面设计好的精彩探索活动就没有必要再进行了。碰上这样的意外,教师采取了生硬的处理方式。让其他学生继续探索,但此时教师的不满情绪和处理这件事情的方式使得全班同学失去了探索的兴趣和发言的勇气。教师如果换一种方式,先表扬发言学生“你真是个爱学习的学生,我相信你还是个爱思考的学生!”然后让他和大家一道动手操作、探索、验证中位线为什么会具有这样的性质,课堂效果应该更好。(2)生成从性质角度来说,有积极的一面,也有消极的一面,从效果角度来说有有效的一面,也有无效的一面。教师在课堂上要充分发挥好自己组织者的角色,不断地捕捉、判断、重组课堂教学中从学生那里涌现出来的各种各种各类信息,并能快速断定哪些生成对教学是有效的,哪些生成是偏离了教学目标,一名优秀的数学教师应该能够正确应对课堂上出现的各种各样生成,使之为我们的数学教学服务,提高课堂教学的效果。一十五、数学教育家弗赖登塔尔(Hans.Freudental)认为,人们在观察认识和改造客观世界的过程中,运用数学的思想和方法来分析和研究客观世界的种种现象,从客观世界的对象及其关系中抽象并形成数学的概念、法则和定理,以及为解决实际问题而构造的数学模型的过程,就是一种数学化的过程。(1)请举出一个实例,并简述其“数学化”的过程:(2)分析经历上述“数学化”过程对培养学生“发现问题,提出问题”以及“抽象概括”能力的作用。【答案】本题主要考查对“数学化”的理解。一十六、下面是某位老师引入“负数”概念的教学片段。师:我们当地7月份的平均气温是零上28℃,l月份的平均气温是零下3℃,问7月份的平均气温比1月份的平均气温高几度如何列式计算生:用零上28℃减去零下3℃,得到的答案是31℃。师:答案没错,算式呢生:文字与数字混在一起,一点也不美观。生:零上28℃,我们常说成28℃,可用28表示,但是零下3℃不能说成3℃呀!也就不能用3表示。师:大家的发言很有道理,如何解决这一系列的矛盾呢看样子有必要引入一个新数来表示零下3c℃。这时,零下3℃就可写成-3℃,-3就是负数。问题:(1)对该教师情境创设的合理性作出解释;(2)在引入数学概念时,结合上述案例,说说教师创设情境要考虑哪些因素【答案】(1)在这段教学中,教师没有将负数的概念强压给学生,而是设计了计算温度这个情境,让学生自己参与计算活动,发现其中的困惑,从而产生学习新数学概念的意愿。教师只是从中提炼出学生的想法,并进一步上升为数学知识——负数。这样,负数概念的提出,成为了学生的自觉行为。学生对负数概念的引入有了较深的思想基础,就会认识到学习负数的必要性,为学好负数奠定了基础。(2)引入数学概念是教学的开始,学生能否掌握好这个概念,与教师引入的艺术是密切联系的。因此,在引人数学概念时,要考虑下面的因素。①学习的必要性。引入新概念时,教师应创设一个引入概念的情境,让

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论