版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FieldandWaveElectromagnetics电磁场与电磁波2012.3.611.ProductsofVectors2.OrthogonalCoordinateSystemsReviewCartesianCoordinatesPositionvector:ArbitraryVectorA:2Dotproduct:Crossproduct:Differentiallength:Differentialvolume:Differentialsurface:33.GradientofaScalarField4.DivergenceofaVectorField5.DivergenceTheorem46.CurlofaVectorField7.Stokes’sTheorem8.TwoNullIdentitiesifthenifthen59.Helmholtz’sTheoremHelmholtz’sTheorem:Avectorfield(vectorpointfunction)isdeterminedtowithinanadditiveconstantifbothitsdivergenceanditscurlarespecifiedeverywhere.6MaintopicStaticElectricFields1.FundamentalPostulatesofElectrostaticsinFreeSpace2.Coulomb’sLaw3.Gauss’sLawandApplications4.
ElectricPotential
71.FundamentalPostulatesofElectrostaticsinFreeSpace1.1.ElectricfieldintensityElectircfieldintensityisdefinedastheforce
perunitchargethataverysmallstationarytestchargeexperienceswhenitisplacedinaregionwhereanelectricfieldexists.Thatis,TheelectricfieldintensityEis,thenproportionaltoandinthedirectionoftheforceF.IfFismeasuredinnewtons(N)andchargeqincoulombs(C),thenEisinnewtonspercoulomb(N/C),
whichisthesameasvoltspermeter(V/m).AninverserelationofaboveEq.givestheforceFonastationarychargeqinanelectricfieldE:81.2.FundamentalPostulatesThetwofundamentalpostulatesofelectrostaticsinfreespacespecifythedivergenceandcurlofE.Theyare
isthevolumechargedensityoffreecharges(C/m3),and0
isthepermittivityoffreespace,auniversalconstant.Equationassertsthatstaticelectricfieldsareirrotational(conservative)andimpliesthatastaticelectricfieldisnotsolenoidalunless=0.Differentialform9DivergenceTheoremWhereQisthetotalchargecontainedinvolumeVboundedbysurfaceS.EquationisaformofGauss’slaw,whichstatesthatthetotaloutwardfluxoftheelectricfieldintensityoveranyclosedsurfaceinfreespaceisequaltothetotalchargeenclosedinthesurfacedividedby0.
Stokes’sTheoremwhichassertsthatthescalarlineintegralofthestaticelectricfieldintensityaroundanyclosedpathvanishes.Thescalarproductintegratedoveranypathisthevoltagealongthatpath.ThisEq.isanexpressionofKirchhoff’svoltagelawincircuittheorythatthealgebraicsumofvoltagedropsaroundanyclosedcircuitiszero.101.2.FundamentalPostulatesDifferentialformIntegralformPostulatesofelectrostaticsinfreespace112.Coulomb’sLaw2.1.Electricfieldduetoapointcharge12Example3-1p78场点P
(x,y,z)y源点Q(x’,y’,z’)zxO132.2Coulomb’sLawWhenapointchargeq2isplacedinthefieldofanotherpointcharge
q1attheorigin,aforceF12isexperiencedbyq2duetoelectricfieldintensityE12ofq1atq2.wehave2.3ElectricfieldduetoasystemofdiscretechargesSinceelectricfieldintensityisalinearfunctionof(proportionalto)aRq/R2,theprincipleofsuperpositionapplies,andthetotalEfieldatapointisthevectorsumofthefieldscausedbyalltheindividualcharges.WecanwritetheelectricintensityatafieldpointwhosepositionvectorisRas14Letusconsiderthesimplecaseofanelectricdipolethatconsistsofapairofequalandoppositecharges+qand–q,separatedbyasmalldistance,d,asshowninFig.Electricdipolemoment,p:15电偶极子的电场线和等位线16PV’2.4ElectricfieldduetoacontinuousdistributionofchargesTheelectricfieldcausedbyacontinuousdistributionofchargecanbeobtainedbyintegrating(superposing)thecontributionofan
elementofchargeoverthechargedistribution.dv’R(V/m)17Example3-4p85-87183.Gauss’sLawandApplicationsGauss’slawassertsthatthetotaloutwardfluxoftheelectricfieldintensityoveranyclosedsurfaceinfreespaceisequaltothetotalchargeenclosedinthesurfacedividedby0.Gauss’slawisparticularlyusefulindeterminingtheE-fieldofchargedistributionswithsomesymmetryconditions,suchthatthenormalcomponentoftheelectricfieldintensityisconstantoveranenclosedsurface.TheessenceofapplyingGauss’slawliesfirstintherecognitionofsymmetryconditionsandsecondinthesuitablechoiceofasurfaceoverwhichthenormalcomponentofEresultingfromagivenchargedistributionisaconstant.SuchasurfaceisreferredtoasaGaussiansurface.1920Example3-5p8821xzyr21rO例4求长度为L,线密度为的均匀线分布电荷的电场强度。
令圆柱坐标系的z轴与线电荷的长度方位一致,且中点为坐标原点。由于结构旋转对称,场强与方位角
无关。因为电场强度的方向无法判断,不能应用高斯定律,必须直接求积。22
因场量与无关,为了方便起见,可令观察点P
位于yz平面,即,那么xzyr21rO考虑到23求得当长度L
时,1
0,2,则24Example3-6p8925Example3-7p9026274.ElectricPotentialWewanttomaketwomorepointsaboutEq.First,theinclusionofthenegativesignisnecessaryinordertoconformwiththeconventionthatingoingagainsttheEfieldtheelectricpotential
Vincreases.Second,whenwedefinedthegradientofascalarfield,thatthedirectionofVisnormaltothesurfacesofconstantV.hencethefieldlinesorstreamlinesareeverywhere
perpendiculartoequipotentiallinesandequipotentialsurfaces.28Electricpotentialdoeshavephysicalsignificance,anditisrelatedtotheworkdoneincarryingachargefromonepointtoanother.Aswedefinedtheelectricfieldintensityastheforceactingonaunittestcharge.Therefore,inmovingaunitchargefrompointP1
topointP2
inanelectricfield,workmustbedoneagainstthefield
andisequaltoAnalogoustotheconceptofpotentialenergyinmechanics,AboveequationrepresentsthedifferenceinelectricpotentialenergyofaunitchargebetweenpointP2andpointP1.
DenotingtheelectricpotentialenergyperunitchargebyV.theelectricpotential,wehave29Wehavedefinedapotentialdifference(electrostaticvoltage)betweenpointsP2andP1.Itmakesnomoresensetotalkabouttheabsolutepotentialofapointthanabouttheabsolutephaseofphasorortheabsolutealtitudeofageographicallocation;areferencezero-potentialpoint,areferencezero(usuallyatt=0),orareferencezeroaltitude(usuallyatsealevel)mustfirstbespecified.Inmost(butnotall)casesthezero-potentialpointistakenatinfinity.Whenthereferencezero-potentialpointisnotatinfinity,itshouldbespecificallystated.30ElectricPotentialduetoaChargeDistributionForasystemofndiscretepointchargesq1,q2,…,qnTheelectricpotentialdueto
onepointcharge31ForavolumechargedistributionForasurfacechargedistribution
Foralinechargedistribution
Asanexample,letusagainconsideranelectricdipoleconsistingofcharges+qand–qwithasmallseparationd.Calculatetheelectricfieldintensityproducedbytheelectricdipole.32TheelectricpotentialatPproducedbyanelectricdipolecanbewrittendowndirectly:Solution:33Makeatwo-dimensionalsketchoftheequipotentiallinesandtheelectricfieldlinesforanelectricdipole.34Example3-9P98-9935TheprecedingexampleillustratestheprocedurefordeterminingEbyfirstfindingVwhenGauss’slawcannotbeconvenientlyapplied.However,weemphasizethatifsymmetryconditionsexistsuchthataGaussiansurfacecanbeconstructedoverwhichE·dsisconstant,itisalwayseasiertodetermineEdirectly.ThepotentialV,if
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论