版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
6.1热力学基础知识
6.1.1热力学的物系热力学体系:和周围环境的其它物体划开的一个任意形态的物质体系(一)既无物质交换又无能量交往的,称为隔绝体系(二)无物质交换,但有能量交换的,称为封闭体系(三)有物质交换,也有能量交换的,称为开口体系高速流中遇到的情况绝大多数属于隔绝体系和封闭体系。经典热力学所处理的都是处于平衡状态下的物系。但在分析时我们也常用开口体系(控制体)。6.1、热力学基础知识6.1.2完全气体假设与状态方程、内能和焓、热力学第一定律1、完全气体假设与状态方程完全气体:气体分子直径远小于分子的平均自由程,且分子间不存在引力仅为完全弹性碰撞的气体称为完全气体,空气可被假设为完全气体。状态方程:任何气体的压强、密度、绝对温度三者之间存在一定的关系,称为状态方程。对于完全气体的状态方程为:其中R
称为气体常数,空气的R=287.053N.m/(kg.K)。在热力学中,常常引入另外一个代表热含量的参数h(焓)由于表示单位质量流体所具有的压能,故焓h表示单位质量流体所具有的内能和压能之和。
2、内能、焓气体内能是指分子微观热运动(与温度有关)所包含的动能与分子之间存在引力而形成的位能之和。对于完全气体而言,分子之间无引力,单位质量气体的内能u仅仅决定于分子间的热运动,是温度的函数。6.1.2完全气体假设与状态方程、内能和焓、热力学一定律
热力学第一定律热力学第一定律是一条能量守恒定律。对一个封闭物系来说,经过一步无限微小的可逆过程,由外界给物系的热量dQ必等于物系的内能增量dU和该物系对外界膨胀所作的功pdV这二者之和(这里V是体积),即:这是静止物系的热力学第一定律的公式。上式两端同除以物系的质量可得静止物系满足的单位质量能量方程:6.1.2完全气体假设与状态方程、内能和焓、热力学一定律密度的倒数就是单位质量的体积,即比容。单位质量的焓的微分是:
从而静止物系单位质量的能量方程可用焓表为:一个物系的压强、密度和温度都是状态函数或称点函数,内能和焓都是状态函数或函数。6.1.2完全气体假设与状态方程、内能和焓、热力学一定律比热比热:单位质量气体每加热升高一度时所吸收的热量比热的大小与热力学过程有关。由静止气体热力学第一定律:
定容过程的比热(cυ)和等压过程的比热(cp):6.1.2完全气体假设与状态方程、内能和焓、热力学一定律将比热关系和状态方程代入焓的表达可得梅耶公式:采用完全气体模型,比热及比热比γ都是常数。完全气体的模型只能用到M
数不太高的超音速流为止。对于M数很高的高超音速流动,则必须计及气体的非完全性
常规状态下空气的比热比:6.1.2完全气体假设与状态方程、内能和焓、热力学一定律
熵熵是反映热能可利用部分的指标,有意义的是熵增量。熵增量的定义是:系统经历可逆过程时的加热量与温度之比。下标表示可逆:6.1.3熵,热力学过程,热力学第二定律熵是状态参数,这是因为熵增可以写为全微分:熵增量的表达还可写为(根据上述二式):因此等熵即:
或:或:6.1.3熵,热力学过程,热力学第二定律热力学过程系统可在各种条件下经历热力学过程从一种热力学状态变化到另一种热力学状态,不同的热力学过程可用其对应的压强和比容关系即p~υ图表达出来。常见的热力学过程可用下式表达:
其中是比容n=0--等压过程n=1--等温过程n=γ=Cp/Cv-等熵(绝热可逆)过程n=∞--等容过程n=其他--多变过程6.1.3熵,热力学过程,热力学第二定律热力学第二定律指出:在绝热变化过程中,如果过程可逆,则熵值保持不变,s=0
,称为等熵过程;如果过程不可逆,熵值必增加,s>0。因此,热力学第二定律也称为熵增原理。在高速流中,不可逆是因气体摩擦、激波出现以及因温度梯度而引起。一般在绝大部分流场区域速度梯度和温度梯度都不大,可近似视为绝热可逆的,称为等熵流动,等熵关系式成立。在边界层及其后的尾迹区,激波附近区域,气体的粘性和热传导不能忽视区域,流动是熵增不可逆过程,等熵关系式不能用。
3.
热力学第二定律6.1.3熵,热力学过程,热力学第二定律6.2音速和马赫数
6.2.1弱扰动与强扰动
可压流场的流动现象与扰动传播速度和扰动传播区有关如果描写流场的诸物理参数(V
,p,ρ
,T)发生了变化,就说流场受到了扰动。使流动参数的数值改变得非常微小的扰动,称为微弱扰动简称为弱扰动,例如说话(即使是大声说话)时声带给空气的扰动就是如此。使流动参数改变有限值的扰动,称为有一定强度的扰动简称为强扰动,例如激波便是一种强扰动。6.2.2微弱扰动传播过程与传播速度——音速在不可压流中,微弱扰动传播速度a是无限大,扰动瞬间将传遍全部流场在可压流中,情况就不一样了。因为气体是弹性介质,扰动不会在一瞬间传遍整个流场,扰动的传播速度a不是无限大,而是有一定的数值。注意扰动的传播速度a
与介质本身的运动速度
dV
是两码事,一般情况下dV<<a音速——微弱扰动在弹性介质中的传播速度,是研究可压流场的一个很重要的物理量。音速大小只与介质物理属性、状态、以及波传播过程的热力学性质有关,而同产生扰动的具体原因无关。6.2.3音速公式
如图充满气体的活塞,设想对活塞轻微的推动一下,则扰动便以速度a向右传播,扰动波未到达前后气体的参数如图所示。取随波阵面AA运动的相对坐标,我们从基本方程出发导出音速的表达式。由质量守恒定律:略二阶小量得:根据动量定理(向左为正):整理得:二式相除得:aa-dVp,ρ,Tp+dp,ρ+dρT+dTx6.2.3音速公式由于音速的平方与密度变化量成反比,即同样的压强变化量下,音速的大小反映了密度变化的小大,因此音速a是介质压缩性的一个指标。由于介质的弹性模量定义为产生单位相对体积变化时(或产生单位相对密度变化时)所需的压强变化量,所以弹性模量是反映介质压缩难易程度的指标。实际上音速可用弹性模量E写为:微弱扰动在空气中的传播可看成是等熵过程,将等熵关系代入音速公式可得:例如在海平面空气的音速a≈340m/s,而水的音速a≈1440m/s
6.2.4马赫数马赫数:气流速度V与当地音速a之比由于音速随高度(或温度)变化,因此在不同高度上,同样的M
数並不一定表示速度相同。马赫数是一个非常重要的无量纲参数,是一个反映压缩性大小的相似准则。M
数的大小标志着运动空气压缩性的大小,M值越大则压缩性越大:可证当时,,密度的相对变化不大,这时可将低速气体近似视为不可压缩流体。事实上即使是液体也不可能绝对不可压。我们将低速气体看成不可压流体的原因在于,流动时引起密度的变化很小,因此不可压仍然是一种理想化的假设模型,而这种模型具有一定程度的合理性。6.2.4马赫数马赫数还代表单位质量气体的动能和内能之比,即
M数很小,说明单位质量气体的动能相对于内能而言很小,速度的变化不会引起气体温度即内能的显著变化,因此对于不可压流体其内能不变或温度不变,不考虑其热力关系。对不可压流体来说,如果温度有变化,那一定是传热引起的,但加热只能使温度升高或内能增加,不能使流体膨胀做功。对于高速气体来说(M
较大),即使是在绝热情况下,速度的变化会引起热力关系(
p、ρ
、T
)变化,内能将参与能量转换。6.3高速一维定常流高速流动时,即使只是一维定常流动,由于密度ρ和温度T发生变化,流动参数增加为四个:V
、p、ρ、T已经有了三个基本方程,它们是:连续方程、动量方程和状态方程。为了能解出四个流动参数,需要补充第四个方程—能量方程。6.3.1
一维定常绝热流的能量方程一维定常流能量方程在第2章,我们讨论了能量方程即积分形式的能量方程为:一维定常时:
在重力场下即:表明对流体微团加热和做功,等于微团内能增加、势能增加、动能增加、对外膨胀做功以及压强做功(合为流动功)6.3.1
一维定常绝热流的能量方程当不考虑做功和略势能时流动子物系的能量守恒式为:
这个式子比静止物系多了两项,其中的是流动时所特有的功,那是流体微团的体积不变,在压强有变化的流场中运动时所作的功;另一项是动能的改变量。
在一维定常绝热可压缩流中,上能量方程可积分为:用焓表示时,上述能量方程为:一维定常流能量方程的不同形式根据焓的不同表达从而:条件:沿流线定常、绝热、绝功、略势能、可压缩、允许有粘性表明:沿流(线)管V增加时,h,T,a下降,但总能量不变6.3.1一维定常绝热流的能量方程
对于一维定常绝热流,我们可以确定流动参数沿流线(或沿流管轴线)变化的关系式,但需给定参考点上的参数值。常用的参考点是驻点或临界点。使用驻点参考量的参数关系式驻点指速度等熵地降为零的点。在驻点处焓达到最大值,称为总焓或驻点焓h0。由定常一维绝热流能量方程:驻点处的温度,称为总温T0
:
h0、T0(或α0)可以代表一维绝热流的总能量,当绝热时总焓和总温均不变。而T是V≠0点处的当地温度,称为静温。6.3.2一维定常绝热流参数间的基本关系式由前式可得总、静温之比为:在一维绝热有粘流中,我们定义流线上任一点(或任一截面)处的总压是该处流速等熵滞止为零时所达到的压强,或称驻点压强,根据等熵关系:6.3.2一维定常绝热流参数间的基本关系式由等熵关系式还可写出密度比与温度比的关系为从而得到所谓的一维等熵关系式对应的可将ρ0看成流动等熵滞止时达到的密度,称为总密度、驻点密度或滞止密度。对于一维等熵流,则T0,p0,ρ0
这三个总参数均不变。其中第一式只要求绝热就成立说明一维绝热流中总、静温及相应的压强和密度之比均只取决于当地M数6.3.2一维定常绝热流参数间的基本关系式使用临界参考量的参数关系式
在一维绝热流中,沿流线某点处的流速恰好等于当地的音速,即M=1,则称为临界点或临界截面。临界参数用上标“*”表示由绝热能量方程可得:
a*称为临界音速:得临界点与滞止点温度比为:6.3.2一维定常绝热流参数间的基本关系式
由等熵关系可得临界压强与驻点压强、临界密度与驻点密度之间的关系:
由于临界音速a*
正比于滞止音速a0
,即正比于,故它也可代表一维绝热流的总能量,同时可以作为一个参考量。6.3.2一维定常绝热流参数间的基本关系式6.3.2一维定常绝热流参数间的基本关系式速度系数λ与马赫数
M之间的关系是:
速度系数利用临界音速a*可以定义一个无量纲速度系数λ:采用速度系数λ
的好处是:当绝热时临界音速a*是个定值,方便计算,而M数中的音速a还会随流动变化,计算不方便。速度系数λ与马赫数M
的关系曲线见下图,其特点是:M=0,λ=0;M<1,λ<1;M=1,λ=1;M>1,λ>1;6.3.2一维定常绝热流参数间的基本关系式由绝热能量方程可知,当温度T降为0,速度达到最大:当然根据热力学第二定律,实际上不可能用加速膨胀的方法使气流毫无损失地将温度降到绝对零度。
一维等熵关系式可用速度系数来表达绝热能量方程用滞止音速可写为:用右端同除式子,同时注意到右端还可表为总参数:从而绝热能量方程可写为:压强比与密度比关系可利用等熵关系写出:6.3.2一维定常绝热流参数间的基本关系式6.3.2一维定常绝热流参数间的基本关系式
这三个用速度系数表达的式子也称为一维等熵关系式,其中第一式只要求绝热即成立。
可见随速度系数增加,温度、压强和密度一路都是下降的。这些关系都做成了表格方便查阅。从而:等熵管流的速度与截面积关系又一维定常流微分形式的连续方程是:综合两式,得等熵管流中速度变化与截面积变化的关系式:
将音速公式代入欧拉方程可得:
6.3.3等熵管流的流动参数与截面积关系、流量公式发生音速处面积A有极值,从物理上可判断该处A应是极小值(反证)亚音速(包括低速)时如果管截面收缩则流速增加,面积扩大则流速下降;超音速时情形则刚好相反。从式我们可以看出:6.3.3等熵管流的流动参数与截面积关系、流量公式上述截面流速与截面积变化规律的物理原因是:亚音速时密度变化较速度变化为慢,而超音速时密度变化比流速变化快亚音速时想增加流速,由连续方程则截面积应缩小。超音速时想增加流速,由连续方程则截面积应放大。6.3.3等熵管流的流动参数与截面积关系、流量公式
由上已经看到,一维定常等熵流中密度ρ的变化趋势与速度V相反,其他气流参数(p、T)随速度V的变化趋势是怎样的?
压强
p
变化趋势与速度相反由微分形式的动量方程(欧拉方程):
将音速表达代入上式得:
温度T变化趋势与速度也相反将上二式代入状态方程可得温度比的关系:2.其它流动参数与截面积的关系6.3.3等熵管流的流动参数与截面积关系、流量公式由这三个关系右端的系数可见,当速度增加时,p、ρ、T都是减小的,但p
减小最快,ρ减小次之,而T
减小最慢(空气γ=1.4)。即:6.3.3等熵管流的流动参数与截面积关系、流量公式面积减小增大增大减小速度增大减小增大减小压力减小增大减小增大密度减小增大减小增大温度减小增大减小增大马赫数增大减小增大减小用以下图表来表示一维定常等熵变截面管流中的参数变化:6.3.3等熵管流的流动参数与截面积关系、流量公式3.拉瓦尔喷管或喷管对一维等熵管流,如想让气流沿管轴线连续地从亚音速加速到超音速,即始终保持dV>0,则管道应先收缩后扩张,中间为最小截面,即喉道。即使气流在喉道之前收缩膨胀加速,在喉道处达到音速,之后继续膨胀加速,达到超音速。6.3.3等熵管流的流动参数与截面积关系、流量公式6.3.3等熵管流的流动参数与截面积关系、流量公式一个喷管在出口截面产生M>1的超音速气流的条件是:管道形状应成为拉瓦尔管形状在喷管上下游配合足够大的压强比一个出口接大气的喷管,当喷管出口达到设计M
数而出口压强恰等于外界大气压强时,则喷管处于设计状态。如果上游压强过高或过低,喷管出口内外将出现激波或膨胀波。
流量公式与面积比关系喷管截面积与马赫数的关系可由如下的流量公式与面积比关系计算:可见,用该式计算流量只需知道总压、总温、截面积和q(λ)6.3.3等熵管流的流动参数与截面积关系、流量公式6.3.3等熵管流的流动参数与截面积关系、流量公式q(λ)随λ
变化的曲线如图,其特点是:当λ=1时,q(λ)=1;当λ=0和λ=λmax时,q(λ)=0;
q(λ)等函数与λ的关系均已做成表格(附表4、5),可方便查读。流量函数还可用马赫数表达为:流量函数:可得喷管中任一截面与喉道的面积比关系:由管流的质量守恒关系:利用上述面积比关系可求出喷管中某截面处λ(M)数,或根据λ
(M)数要求初步设计喷管,确定喷管出口与喉道面积比。由于流量函数q(λ)在λ=1处达到极大值q(1)=1,因此当喉道达音速时,下式规定了喷管的最大流量:6.3.3等熵管流的流动参数与截面积关系、流量公式例:有一个超音速风洞,试验段截面积为0.6m×0.6m正方形,喷管是二维的(即等宽度0.6m),试验段Mt=2.0,上游安定段总压p0=400kN/m2,T0=293K。试求喉道高度h*,试验段pt、Vt、mt。解:(1)由查表或通过计算得(2)(3)6.3.3等熵管流的流动参数与截面积关系、流量公式6.4微弱扰动的基本特征
6.4.1微弱扰动的传播区、马赫锥
亚音速流场和超音速流场有许多本质上的差别,其中之一是小扰动的传播范围或者说影响区是不同的。在一个均匀流场中扰源发出的小扰动均以音速向四周传播,影响区有下面四种情况:μ的定义域是:M≥1(a)在静止气体中(M=0)从某瞬间看,前i秒发出的扰动波面是以扰源O为中心、iα为半径的同心球面。只要时间足够长,空间任一点均会受到扰源的影响,即扰源的影响区是全流场(b)亚音速气流中(M<1)
前i秒扰源发出的半径为iα的球面波要顺来流方向从O下移到Oi点,OOi=iV。由于iV<iα,故扰动仍可遍及全流场。
(c)音速气流中(M=1)iV=iα扰动影响半平面。(d)超音速气流中(M>1)此时OOi=iV>iα扰源的影响不仅不能到O点的前方,而且局限在以O为顶点所有扰动球面波包络面—圆锥面即马赫锥以内6.4.1微弱扰动的传播区,马赫锥亚音速流场中扰动可遍及全流场,气流没有到达扰源之前已感受到它的扰动,逐渐改变流向和气流参数以适应扰源要求;而在音速和超音速流场中,扰动不会逆传到扰源上游,气流未到达扰源之前没有感受到任何扰动,故不知道扰源的存在。超音速流中三维弱扰动的边界线是马赫锥,其半顶角称为马赫角,M值越大则μ角越小。二维弱扰动的边界线称为马赫线或马赫波,马赫波与来流的夹角仍然是马赫角。显然只有在音速和超音速情况下才可能存在马赫波或马赫锥。(注:超音速流中强扰动以激波为界,激波是使压强、密度、温度等产生突跃变化的界面,强扰动被限制在激波下游也不能逆传,激波角与马赫角不同,需按照激波理论确定。)6.4.1微弱扰动的传播区,马赫锥6.4.2 微弱扰动马赫波满足的基本关系如图超音速流场中壁面在O点向外折微小的角度dδ(规定外折为正),则扰动被限制在由O点发出的马赫波OL的下游,扰动的影响是使气流外折dδ这么大的角度。OL线与原始气流的夹角是:超音速气流受到微小扰动而使气流方向发生变化,扰动的界面是马赫锥或马赫波,扰动包含了膨胀扰动和压缩扰动两种,以下讨论平面扰动,先考虑微小膨胀扰动如图将马赫波波前和波后的速度分解为垂直和平行波面的两个分量,取一个无穷靠近波面的控制体如图。由于在平行波方向上无压强变化,故切向动量方程是:
即切向分速相等:由几何关系:dδ微小的条件下保留一阶小量得:VVdV6.4.2 微弱扰动马赫波满足的基本关系dδLVV’=V+dVμVtVt’o由于经过马赫波的流动可视为绝热流动,且由于参数变化微小故可假设为等熵流动,因此前述等熵参数变化关系成立:6.4.2 微弱扰动马赫波满足的基本关系此式即:表明超音速时外折微小角度dδ
将使流动加速,反之内折微小角度将使流动减速。将上述速度变化dV/V与外折角dδ
的关系式代入可得经外折角dδ后的压强、密度和温度变化关系:
可见超音速经微小外折角后,伴随着气流速度增大,压强、密度和温度均减小,气流膨胀,故称为膨胀马赫波简称膨胀波;反之当璧面内折一个负的微小角度,则伴随着流速减小,压强、密度和温度增,气流发生压缩,故称为压缩马赫波简称压缩波。
经过马赫波(包括膨胀波与压缩波)后璧面上压强系数为:6.4.2 微弱扰动马赫波满足的基本关系先考察气流在O1处经受外折微小角度dδ1以后,又在O2、O3继续外折角度dδ2
及dδ3在超音速流中,扰动只向下游传播,所以,在新的折点O2上游,气流保持O1L1下游的速度
M2=M1+dM1,方向下折dδ1。流到O2时,受到新的扰动,穿过新的马赫波O2L2,继续外折dδ2,速度变为M3=M2+dM2
。与当地气流方向的夹角为:6.5 膨胀波
6.5.1 壁面外折δ由于
M2>M1,所以μ2<μ1
这就是说,第二道膨胀波与波前气流方向的夹角小于第一道膨胀波的倾斜角。但M2
的方向相对于M1
而言已外折了dδ1,故O2L2与AO1的夹角是(μ2-dδ1),也就是说,相对于原始气流的方向而言,O2L2比O1L1向右倾斜得利害一些。同理,μ3<μ2<μ1, 即,后产生的每一道膨胀波相对于原始气流的倾斜角都比前面的小,所以每道膨胀波不可能彼此相交,因而形成了一个连续的膨胀区域。6.5 膨胀波
6.5.1 壁面外折δ根据极限概念,曲线可以看作是无数条微元折线的极限。因而,超音速气流绕外凸曲壁膨胀可看成连成一片的连续膨胀地带。绕有限值外钝角的流动也可看成从角点发出的连续膨胀波形成的(普朗特—迈耶流动Prandtl-MeyerFlow)由于变化是连续的,流场不会有很大的线变形率和角变形率,粘性作用可以忽略,同时也没有很大的温度梯度,气体微团间也没有显著的热传导发生,流动可视为等熵的。6.5 膨胀波
6.5.1 壁面外折δ值得指出的是,对于超音速绕多个微小内折直线段或凹曲面流动时必然进行压缩变化。这个连续的曲面也可以看成是无限个微小直线段连成的折线璧面,每一线段转折一个微小角度,产生一道微小压缩波,这些微小压缩波对当地气流而言其波角都是马赫角,但由于气流经每一道压缩波后马赫数都下降一次,再加上波后气流沿璧向内转折,两种因素都使压缩波在一定距离处聚拢,末端形成一道具有一定强度的突跃的压缩波即斜激波,其波角不能用马赫角计算。由于经过激波时参数发生剧烈改变,粘性不能忽略,流动不等熵。当璧面在o点直接内折一个非微小量的角度δ时,形成从o点发出的始终具有一定强度的斜激波。6.6.1正激波
1.正激波的形成如果在一根长管中充满了静止气体,压强为
p1,密度为ρ1
,温度为T1。管之左端用一个活塞封住从t=0
起到
t=t1
为止,活塞向右做急剧的加速运动,t1以后以匀速前进。从t=0
到t=t1的加速过程中,活塞以右的气体受到越来越强的压缩,假设t1
时与活塞接触的气体压强由原来的
p1上升到
p2,AA界面是第一个扰动所达到的地方,其右是未经扰动的气体,以左是已经被压缩过的气体,而且越靠活塞压缩越厉害,气体的压强由AA处的
p1连续地上升到活塞处的
p2。我们可以把这个连续的变化看作是无数个微小的压缩波,每一道波使压强提高一个,每一小步的压缩波都以当地的音速向右推进。活塞初动时的第一道小波以的速度向右推进,该波扫过的气体,压强和温度都有微小提高。第二道小波向右推进的速度是,比第一道波快。第三道波又在第二道之后,每道居后的波都在追赶它前面的波。t1时AA到BB的长度,必随时间的前进越来越短6.6.1正激波
1.正激波的形成再经过一定时间,所有后产生的波都追上了第一道波,整个波区A-B的长度缩短为零,无数多道微弱压缩波叠在一起,形成一张具有一定强度的突跃压缩面S-S。在S-S未到之处,气体完全没有受到压缩,而只要S-S一到,气体就突然受到压缩,压强由p1突然增大到p2。这样一个突跃的压缩面S-S,称为激波。因S-S面与气流方向垂直,这种激波称为正激波上面讨论时未考虑气体微团的运动速度,气体原来静止,经第一道波压缩之后,气体微团多少有了一点向右的运动速度,所以第二道波的速度还应叠加该气体运动速度,两个因素都是使第二道波比第一道波快。激波形成是必然的。6.6.1正激波
1.正激波的形成6.6.1正激波
1.正激波的形成正激波一旦形成就会以一定速度Vs(必大于a1)向右推进,激波扫过的气体压强、密度、温度均突跃升高,同时气体微团速度也突然升高为Vg
,Vg远远小于Vs,活塞停止加速后,也必须以Vg
跟着向右运动,否则活塞与气体之间就会发生真空。6.6.1正激波
2.正激波的推进速度与兰金-雨贡纽关系式取如图与激波固连的控制体,由质量方程:动量方程:可解出激波推进速度Vs
与波后气体速度Vg分别为:绝对坐标相对坐标实际上激波前后密度变化是根据压强变化确定的。由能量方程:将上述Vs和Vg的关系代入上能量方程可解出密度比:这个关系称为兰金-雨贡纽关系式(Rankine–Hugoniot)
,它规定了激波的密度比由压强比所决定也称为突跃绝热关系。2.正激波的推进速度与兰金-雨贡纽关系式由此图看出:(—)当压强比不大,即激波强度不大时,突跃绝热线与等熵线几乎是重合的。这表明,跨过弱激波的过程非常接近于等熵过程;(二)压强比愈大,即激波愈强时,突跃绝热过程与等熵过程的差别愈大;(三)在突跃绝热过程中,即使,密度比也只能趋于有限值,但等熵过程密度比趋于无限大。兰金-雨贡纽关系与等熵关系的比较见图:2.正激波的推进速度与兰金-雨贡纽关系式激波推进速度和波后气体速度式还可写为:
可见,激波相对于波前气流是超音速的,激波推进速度越大则激波强度就越强,当激波很弱时p2/p1≈1,激波推进速度无限接近波前未受扰动气流的音速a1。
激波相对于波后气流是亚音速的,激波越强时激波相对于波后气体的推进速度就越小。2.正激波的推进速度与兰金-雨贡纽关系式例:长管中静止空气的压强p1=1大气压,ρ1=1.225kg/m2,T1=288K。用活塞压缩空气产生正激波,p2=2大气压。求激波Vs、
Vg和a2。解:可见Vs>
a1
,即正激波相对于波前的气体其推进速度是超音速的,Vs-Vg<a2,即相对于波后气体则是亚音速的。注意在管道中产生正激波并不需要活塞以超音速运动。2.正激波的推进速度与兰金-雨贡纽关系式对于二维和三维流场上物体产生的正激波,例如超音速飞机头部产生的正激波,物体(飞机)以亚音速运动时不能像管中活塞那样产生激波,因为没有横向璧面的限制,气体在物体到达之前就从横向绕开了,不能形成突跃压缩。物体须以超音速运动才能形成与物体相同的超音速前进的激波。这样形成的正激波与管中正激波性质上相同,前面的公式都能用。P1ρ1
λ1p2ρ2
λ2激波3.正激波前后的参数计算
为了进一步计算激波前后的参数关系,我们仍然用如图的相对座标来处理问题,其好处是可以直接应用定常流的基本方程来进行分析。(1)波前波后速度系数关系对虚线控制面应用动量方程,得:用连续方程除以上式得:其中的压强密度比可用绝热能量方程表为速度和临界音速的函数,由:即:3.正激波前后的参数计算p1ρ1
λ1p2ρ2
λ2激波将p/ρ的表达代入前式,化为全由V1、V2
和a*表达的式子:上式有两个解:一个是V1=V2
,这表示没有激波,所以这个解没有意义。另一个解是:由此得:这就是说:该式称为普朗特激波关系式,说明超音速经正激波后必为亚音速。3.正激波前后的参数计算
(2)正激波前后马赫数关系由λ与M的关系:代入λ1λ2=1得:M1M2113.正激波前后的参数计算(3)密度比与M1
的关系由:将λ与M的关系代入得:(4)压强比与M1
的关系由动量方程:通除以p1,得:M111λ1λ123.正激波前后的参数计算代入密度比关系并整理后,得:
可见与密度比为有限值不同,压强比正比于M12
,当M1
足够大之后将变得很大。
(5)温度比与M1
的关系由状态方程:,代入压强比和密度比关系得:
M111ρ2/ρ1T2/T1p2/p13.正激波前后的参数计算(6)总温比因为是绝热流,总温不变,即:或,与
M1
无关。
(7)总压比与M1
的关系由一维等熵关系式:
将上述p2/p1
~M1
的关系和M2~M1(或T1/T2~M1
)的关系代入可得:3.正激波前后的参数计算如图,M1
越大则总压损失越大:M1p02/p0111(8)总密度比由绝热关系T02=T01
和状态方程,对于M1>1的超音速流:3.正激波前后的参数计算3.正激波前后的参数计算6.6.2斜激波斜激波波面与来流
V1
不垂直,而是成某个夹角β,β
称为激波斜角或简称为激波角,激波角不能按马赫波方法计算。斜激波波后的气流方向既不与激波面垂直,也不与波前气流方向平行而是呈某个夹角δ,称为气流折角,指气流经过斜激波后所折转的角度。超音速气流流过半尖劈的流谱如图所示,这种由流动的几何边界规定了流动方向的斜激波称为方向决定的激波:6.6.2斜激波
1.波前波后气流参数的关系切向分速:
(切向无压差,由动量方程可证)法向分速:
(利用法向连续、动量和能量方程可证)不难理解,由于斜激波前后切向分速相等,而沿法向可以写出与正激波时类似的连续方程、动量方程和能量方程,差别在于其中的速度用的是法向分量Vn=Vsinβ,从而斜激波前后的参数关系在形式上与正激波十分相似,不过是用波前法向马赫数M1sinβ
代替了正激波的M1。斜激波V1V2β-δV1tV2tβδV2nV1n6.6.2斜激波
1.波前波后气流参数的关系压强比:密度比:温度比: 突跃绝热关系,斜激波与正激波时完全一样,都是兰金-许贡纽关系式:事实上不论正激波还是斜激波,上述突跃绝热关系都可以利用压强比和密度比公式中消去M1sinβ
得到。
总压比:马赫数关系:由可解出:可见用波前法向马赫数
M1sinβ
代替正激波的M1
这个办法不适用于波后马赫数
M2
的计算,这是因为马赫数不仅仅取决于法向关系。上述公式都可把正激波作为一个特例(β=π/2)包含进去6.6.2斜激波
1.波前波后气流参数的关系
总温比:(因为跨过斜激波可视为绝热流动)6.6.2斜激波
1.波前波后气流参数的关系正激波是最强的激波由压强比公式可知:一定M1下则当β愈大时,斜激波的强度愈大,当β=90°时(正激波),激波强度达到同一
M1下的最大。可见当来流M1不变时,正激波是最强的激波。最弱的激波是马赫波当P→0时,=1,得: 可见最弱的激波就是马赫波,而斜激波则是介于马赫波与正激波之间的一定强度的激波。
使超音速气流折转同一角度时,分两次折转比一次折转的损失小。因为这时每一次的气流折角都比较小,激波弱,虽然经过两次激波,但这是两道比较弱的激波,总的损失还是比经过一道较强的激波小。折转次数分得越多,总压损失就越小。如果用一个连续内折的内壁使超音速流连续地内折,则必产生无数道微弱的压缩波,使气流受到等熵压缩,没有总压损失。当然,这是理想情况,但却是实际设计努力争取的目标。激波损失的这一特性在设计超音速飞机的进气扩压器时很有用。6.6.2斜激波6.6.2斜激波
3.压强决定的激波
除了超音速气流受到内折时会产生斜激波之外,当超音速气流在停滞或减速提高压强时也会产生斜激波,例如从喷管中流出的超音速气流压强低于环境压强时,在喷管的出口边缘处产生两道激波,使波后压强提高到反压的大小。导弹、超音速喷气飞机和长征火箭尾喷管形成的激波及其反射与方向决定的激波唯一不同的是,激波强度现在是由确定的压强比所规定,如果压强比规定的激波是强波,那么就查图线中的强波部份;如规定的是弱波则查图线中的弱波部份。6.6.4收敛—扩张喷管的工作状态
1.上游总压不变,改变出口反压时喷管的工作情况我们知道要得到超音速气流需使用先收后扩的拉瓦尔喷管,此外还需足够的压强比。改变压强比有两种方式:一是上游总压不变,改变出口反压;二是出口反压不变,改变上游总压。上游总压不变,改变出口反压时喷管的工作情况(例如上游为高压储气罐,下游为可变真空度的真空箱)假定喷管几何尺寸确定,由面积比关系A*/A=q(λ)可确定该喷管出口的两个速度系数(或马赫数):Me1>1,Me2<1,其中Me1就是该喷管的设计马赫数由于P0确定,利用一维等熵关系式p/p0=п(λ)
可求出上述马赫数对应的出口静压,显然pe1/p0<pe2/p0当反压
p
恰等于pe1喷管在设计工作状态,气流的静压与反压相等,环境对出口气流没有扰动,不产生任何波,是完全膨胀状态,这对应于图(a’)
的情况。当反压
p恰等于pe2喷管中的气流在喉道达到音速后以亚音速流出喷管,并在出口处静压与反压相等,这对应于图(e)
的情况。还有一种情况是气流在喷管内部一路加速,在出口达到设计马赫数Me1后,在出口恰好产生一道正激波,经过正激波之后气流变为亚音速,正激波前马赫数Me1>1,压强为pe1,经过对应于
Me1
的正激波后压强突跃升高为p2图(d)6.6.4收敛—扩张喷管的工作状态
1.上游总压不变,改变出口反压时喷管的工作状态波前后压力比
p2/p0可按照一维等熵关系和正激波公式计算:此压力比介于pe1/p0
和pe2/p0之间上述三个压力值pe1
、p2
、pe2
将反压可能的变化范围划分为4个区域:(真空)0~
pe1
,pe1
~p2
,p2
~pe2
,以及
pe2
~p06.6.4收敛—扩张喷管的工作状态
1.上游总压不变,改变出口反压时喷管的工作状态
(1)
p≤pe1
,当反压恰等于pe1
即为完全膨胀即设计状态,管内压强分布为线abc;当反压介于真空和pe1
之间,超音速气流在出口截面处的压强大于反压p,必受到外界低压作用的扰动,而这个扰动是以音速传播的,不可能传到超音速流的上游。只有在气流出了喷管以后,因两侧(与喷管轴线垂直)没有超音速分速,反压的低压影响能从侧向传入气流内部,使气流膨胀,所以在口外产生膨胀波系,属于欠膨胀情况;管内压强分布仍为线abc;(2)pe1<p≤p2,由于反压大于出口压强pe1
,超音速气流必须经过斜激波将压强提高到与外界反压一样;当反压等于p2
时口外须产生最强的正激波才能使管道中过度膨胀的压强提高
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全科医生基层实践培训
- 医疗器械高值耗材
- 【数学】空间向量与立体几何同步练习-2024-2025学年高二上学期数学人教A版(2019)选择性必修第一册
- 动脉瘤的护理
- 企业品牌战略培训
- 2024标准广告公司合同书
- 2024至2030年中国导电导热胶带数据监测研究报告
- 2024年玉米免耕播种机项目评估分析报告
- 2023年植入性支架项目评价分析报告
- 2024至2030年中国自动式温度调节阀数据监测研究报告
- 深圳大学《西方文明史》2023-2024学年第一学期期末试卷
- 2024-2030年中国肉牛养殖产业前景预测及投资效益分析报告权威版
- 2024年同等学力申硕英语考试真题
- 河北省石家庄市长安区2023-2024学年五年级上学期期中英语试卷
- 初中数学30种模型(几何知识点)
- 多能互补规划
- 天一大联考●皖豫名校联盟2024-2025学年高三上学期10月月考试卷语文答案
- GB/T 44291-2024农村产权流转交易 网络交易平台服务规范
- 全国农业技术推广服务中心公开招聘应届毕业生补充(北京)高频难、易错点500题模拟试题附带答案详解
- 公司研发项目审核管理制度
- 山东省名校考试联盟2024-2025学年高一上学期10月联考数学试卷
评论
0/150
提交评论