材料力学课件 1_第1页
材料力学课件 1_第2页
材料力学课件 1_第3页
材料力学课件 1_第4页
材料力学课件 1_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Example1-1Theforceswithmagnitudes5P、8P、4PandPactrespectivelyatpointsA、B、C、Doftherod.Theirdirectionsareshowninthefigure.Trytoplotthediagramoftheaxialforceoftherod.[例1-1]图示杆的A、B、C、D点分别作用着大小为5P、8P、4P、P的力,方向如图,试画出杆的轴力图。ABCDPAPBPCPDOABCDPAPBPCPDN11Solution:DeterminetheinternalforceN1insegmentOA.Takethefreebodyasshowninthefigure.解:求OA段内力N1:设置截面如图ABCDPAPBPCPDOABCDPAPBPCPDN12Similarly,wegettheinternalforcesinsegmentAB、BC、CD.Theyarerespectively:

同理,求得AB、BC、CD段内力分别为:

N2=–3P

N3=5PN4=PBCDPBPCPDN2CDPCPDN3DPDN43Thediagramoftheaxialforceisshownintherightfigure.轴力图如右图Nx2P3P5PP++–Characteristicofthediagramoftheaxialforce:Valueofsuddenchange=concentratedload轴力图的特点:突变值=集中载荷

4Simplemethodtoplotthediagramofaxialforce:Fromthelefttotheright:轴力(图)的简便求法:自左向右:IfmeetingtheforcePtotheleft,theincreaseoftheaxialforceNispositive;遇到向左的P,轴力N

增量为正;5kN8kN3kN+–3kN5kN8kNIfmeetingtheforcetotheright,theincreaseoftheaxialforceNisnegative.遇到向右的P,轴力N增量为负。5Example1-2LengthoftherodshowninthefigureisL.Distributedforceq=kxisactedonit,directionoftheforceisshowninthefigure.Trytoplotthediagramofaxialforceofthetherod.[例1-2]图示杆长为L,受分布力q(x)=kx作用,方向如图,试画出杆的轴力图。Lq(x)ox6Solution:Thefreeendoftherodistheoriginofthecoordinateandcoordinatextotherightispositive.Takethesegmentoflengthxontheleftofpointx,itsinternalforceis解:x坐标向右为正,坐标原点在自由端。取左侧x段为对象,内力N(x)为:N(x)xq(x)NxO–K

LxOq7Example1-3AcircularrodissubjectedtoatensileforceP=25kN.Itsdiameterisd=14mmanditsallowablestressis[]=170MPa.Trytocheckthestrengthoftherod.[例1-3]已知一圆杆受拉力P=25kN,直径d=14mm,许用应力[]=170MPa,试校核此杆是否满足强度要求。8Solution:解:(2)Stress:应力:(3)Checkthestrength:强度校核:(4)Conclusion:Thestrengthoftherodsatisfiesrequest.Therodcanworknormally.结论:此杆满足强度要求,能够正常工作。(1)Axialforce:N=P=25kN轴力:N=P=25kN9

Example1-4Athree-pinhouseframeonwhichaverticaluniformload,withtheindensityintensityisq=4.2kN/misappliedisshowninthefigure.Diameterofthesteeltensilerodintheframeisd=16mmanditsallowablestressis[]=170MPa.Trytocheckthestrengthoftherod.[例1-4]已知三铰屋架如图,承受竖向均布载荷,载荷的分布集度为:q=4.2kN/m,屋架中的钢拉杆直径d=16mm,许用应力[]=170MPa。试校核钢拉杆的强度。Tiebar4.2m8.5m10(1)Determinethereactionsfirstaccordingtotheglobalequilibrium整体平衡求支反力Solution:解:Tiebar8.5m4.2mRARBHA11(3)Stress

应力:(2)Determinetheaxialforceaccordingtothepartialequilibrium:

局部平衡求轴力:RAHARCHCN12(4)Strengthcheckandconclusion:

强度校核与结论:Thisrodsatisfiestherequestofstrength.Itissafe.此杆满足强度要求,是安全的。RAHARCHCN13hCxLqPABDExample1-5Asimplecraneisshowninthefigure.ACisarigidbeam,sumweightofthehoistandheavybodythatisliftedisP.Whatshouldbetheanglesothattherod

BDhastheminimumweight?Theallowablestressoftherod[]isknown.[例1-5]简易起重机构如图,AC为刚性梁,吊车与吊起重物总重为P,为使BD杆最轻,角应为何值?已知BD杆的许用应力为[]。14Analysis:分析:CxLhqPABDSolution:解:(1)Internalforce

N((q)oftherodBD:TakeACasourstudyobjectasshowninthefigure.

BD杆内力N(q):

取AC为研究对象,如图15(2)Thecross-sectionareaAoftherodBD:

BD杆横截面面积A:LNBDYAXAqxPABC16LYAXAqNBDxPABC(3)DeterminetheminimumvalueofVBD

求VBD的最小值:174.Stressesintheinclinedsectionoftherodintensionorcompression

拉(压)杆斜截面上的应力PPkka

PkkaPaAssumeastraightrodissubjectedtoatensileforceP.Determinethestressintheinclinedsectionk-k.

设有一等直杆受拉力P作用。求:斜截面k-k上的应力。18Aa:Areaoftheinclinedsection;

Aa:斜截面面积;PPkkaPkkaPaPa=PSolution:Adoptthemethodofsection.解:采用截面法Accordingtotheequilibriumequation:由平衡方程:

Then则Pa:Internalforceintheinclinedsection.Pa:斜截面上内力。19

PPkkaPkkaPaFromgeometricrelation由几何关系:Substitutingitintotheaboveformulaweget:代入上式,得:Wholestressintheinclinedsection:斜截面上全应力:20Decomposition:分解:pa=Itindicatesthechangeofstressesindifferentsectionsthroughapoint.反映:通过构件上一点不同截面上应力变化情况。Wholestressintheinclinedsection:斜截面上全应力:PPkkaPkkapatasaa21As=90°,As=0,90°,As=0°,(Themaximumnormalstressexistsinthecrosssection)(横截面上存在最大正应力)PPkkaPkkapatasaaAs=±45°,(Themaximumshearingstressexistsintheinclinedsectionof45°)当=0°时,当=90°时,当=±45°时,(45°斜截面上剪应力达到最大)当=0,90°时,22Example1-6Arod,whichthediameterd=1cmissubjectedtoatensileforceP=10kN.Determinethemaximumshearingstress,thenormalstressandshearingstressintheinclinedsectionofanangle30°aboutthecrosssection.[例1-6]直径为d=1cm杆受拉力P=10kN的作用,试求最大剪应力,并求与横截面夹角30°的斜截面上的正应力和剪应力。23Solution:Stressesintheinclinedsectionoftherodintensionorcompressioncanbedetermineddirectlybytheformula:解:拉压杆斜截面上的应力,直接由公式求之:24Example1-7

Atensilerodasshowninthefigureismadefromtwopartsgluedmutuallytogetheralong

mn.Itissubjectedtotheactionofforce

P.Assumethattheallowablenormalstressis[]=100MPaandallowableshearingstressis[]=50MPafortheadhesive.AreaofcrosssectionoftherodisA=4cm².Ifstrengthoftherodiscontrolledbytheadhesivewhatistheangle(:between00~600)togetthelargesttensileforce?[例1-7]图示拉杆沿mn由两部分胶合而成,受力P,设胶合面的许用拉应力为[]=100MPa;许用剪应力为[]=50MPa,并设杆的强度由胶合面控制,杆的横截面积为A=4cm²,试问:为使杆承受最大拉力,角值应为多大?(规定:在0~60度之间)。25Combine(1)、(2)andget:联立(1)、(2)得:Solution:解:PPmnaPa600300B0026Thecurvesofformula(1)and、(2)areshownintheTig.(2).ObviouslythestrengthoftherodontheleftofpointBiscontrolledbythenormalstress,thatontherightofpointBiscontrolledbytheshearingstress.Asa=60°,fromformula(2)wecanget(1)、(2)式的曲线如图(2),显然,B点左侧由正应力控制杆的强度,B点右侧由剪应力控制杆的强度,当a=60°时,由(2)式得Pa600300B100Discussion:As讨论:若27Solution:

Atthepointofintersectionofcurves(1)and(2):解:(1)、(2)曲线交点处:Pa600300B100281.Howtoplottheenlargementsketchofthesmalldeformation1.怎样画小变形放大图?2)Accuratemethodtoplotdiagramofdeformation,thearclineasshowninthefigure;

变形图严格画法,图中弧线;1)Determinedeformation△LiofeachrodasshowninFigl.

求各杆的变形量△Li,如图1;3)Approximatemethodtoplotthediagramofdeformation;thetangentofthearclineshowninthefigure.

变形图近似画法,图中弧之切线。Example1-8Enlargementsketchofthesmalldeformationtheandmethodtodeterminedisplacements[例1-8]小变形放大图与位移的求法。C'ABCL1L2PC"292.WritetherelationbetweenthedisplacementofpointBshowninFig.2anddeformationsoftworods.写出图2中B点位移与两杆变形间的关系ABCL1L2B'PFig.2图230Solution:ThediagramofdeformationisshownintheFig.2.PointBmovestopointB',Fromthediagramofdisplacementwemayknow:解:变形图如图2,B点位移至B'点,由图知:ABCL1L2B'PFig.2图231800400400DCPAB60°60°Example1-9

SupposethecrossbeamABCDisrigid.Asteelcablewiththecross-sectionarea76.36mm²isaroundapulleywithoutfriction.KnowingP=20kN,E=177GPa.DeterminethestressofthesteelcableandtheuprightdisplacementofpointC.[例1-9]设横梁ABCD为刚梁,横截面面积为76.36mm²的钢索绕过无摩擦的定滑轮。设P=20kN,试求钢索内的应力和C点的垂直位移。设钢索的E=177GPa。321)Determinetheinternalforceofthesteelcable:TakeABDasourstudyobject:求钢索内力:以ABCD为研究对象2)Stressandelongationofthesteelcable钢索的应力和伸长分别为:

PABCDTTYAXA800400400DCPAB60°60°Solution:method1Enlargementsketchmethodofthesmalleformation.

解:方法1

:小变形放大图法:333)Deformationisshowninthefigure.

UprightdisplacementofpointCis:变形图如左图,C点的垂直位移为DCPAB60°60°800400400AB60°60°DB'D'C拉压AxialTensionandCompression34800400400CPAB60°60°PABCDTTYAXAExample1-9SupposethecrossbeamABCDisrigid.Asteelcablewiththecross-sectionarea76.36mm²isaroundapulleywithoutfriction.KnowingP=20kN,E=177GPa.DeterminethestressofthesteelcableandtheuprightdisplacementofpointC.[例1-9]设横梁ABCD为刚梁,横截面面积为76.36mm²的钢索绕过无摩擦的定滑轮。设P=20kN,试求钢索内的应力和C点的垂直位移。设钢索的E=177GPa。35800400400CPAB60°60°PABCDTTYAXASolution:Method2:Energymethod:(Workofexternalforcesisequaltothestrainenergy)解:方法2:能量法:(外力功等于变形能)1)Determinetheinternalforceofthesteelcable:TakeABCDasourstudyobject:求钢索内力:以ABCD为研究对象:362)Stressofthesteelcableis:钢索的应力为:3)Displacementofpoint

Cis:

C点位移为:Energymethod:Themethodbywhichtheproblemsrelativetotheelasticdeformationofthestructuremembersaresoloedaccordingtotheconceptofstrainenergyiscalledtheenergymethod.

能量法:利用应变能的概念解决与结构物或构件的弹性变形有关的问题,这种方法称为能量法。800400400CPAB60°60°37CPABD123PAN1N3N2Example1-10Rods1,2and3areconnectedtogetherwithapinasshowninthefigure.Knowingthelengthofeachrodis:L1=L2、L3=L;andtheareaofeachrodisA1=A2=A,A3;modulusofelasticityofeachrodis:E1=E2=E、E3.Externalforceisalongtheuprightdirection.Determinetheinternalforceofeachrod.[例1-10]设1、2、3三杆用铰链连接如图,已知:各杆长为:L1=L2、L3=L;各杆面积为A1=A2=A、A3;各杆弹性模量为:E1=E2=E、E3。外力沿铅垂方向,求各杆的内力。38

Equilibriumequations:

平衡方程:CPABD123PAN1N3N2Solution:

解:39Geometricequation—compatibilityequationofdeformation:

几何方程——变形协调方程:Physicalequation—elasticlaw:

物理方程——弹性定律:CABD123A140Solvingtheequilibriumequationsandcomplementaryequationweget:

解由平衡方程和补充方程组成的方程组,得:CABD123A1Complementaryequation:detainingfromthegeometricequationandphysicalequation.

补充方程:由几何方程和物理方程得。41P1mPExample1-11Fouranglesofawoodenpolearereinforcedwithfourequalleganglesteelof40404.Theallowablestressesofsteelandwoodarerespectively[]1=160MPaand[]2=12MPa,moduleofelasticityofthemareE1=200GPaandE2=10GPa.RespectivelyDeterminetheallowablepermissibleloadP.[例1-11]木制短柱的四角用四个40404的等边角钢加固,角钢和木材的许用应力分别为[]1=160MPa和[]2=12MPa,弹性模量分别为E1=200GPa和E2=10GPa;求许可载荷P。42Geometricequation

几何方程Physicalequationandcomplementaryequation:

物理方程及补充方程:Equilibriumequations:

平衡方程:PPy4N1N2Solution:解:43PPy4N1N2Solvingequilibriumequationsandthecomplementaryequationweget:

解平衡方程和补充方程,得:Determinethepermissibleloadofthestructure:

Method1:

求结构的许可载荷:方法1:44A1=3.086cm2PPy4N1N2Sectionareaoftheanglesteelmaybeobtainedfromthetableofhot-rolledsteel:角钢截面面积由型钢表查得:45Inthecaseof△1=△2,theanglesteelwillreachthelimitstatefirst,thatisthemaximumloadisdeterminedbytheanglesteel.

所以在△1=△2的前提下,角钢将先达到极限状态,即角钢决定最大载荷。Determinethepermissibleloadofthestructure:

求结构的许可载荷:

Method2:方法2:46

aaaaN1N2Example1-12

Theupperandlowerendsofaladder-likesteelshaftarefixedattemperatureT1=5℃asshowninthefigure.Areasoftheupperandlowersegmentsarerespectively1=cm2and

2=cm2.WhenitstemperaturereachesT2=25℃,determinethetemperaturestressofeachrod.(Linearthermalexpansioncoefficient

=

12.5×10-61/0C;modulusofelasticity

E=200GPa)

[例12]如图,阶梯钢杆的上下两端在T1=5℃时被固定,杆的上下两段的面积分别=cm2,

=cm2,当温度升至T2=25℃时,求各杆的温度应力。(线膨胀系数=;弹性模量E=200GPa12.5×10-6/℃

)47

aaaaN1N2Geometricequation:

几何方程:

Equilibriumequation:

平衡方程:Physicalequation:物理方程Solution:解:48Solvingequilibriumequationsandthecomplementaryequationweget:

解平衡方程和补充方程,得:Complementaryequation:

补充方程Temperaturestresses:

温度应力49Example1-13Diameterofacopperwireisd=2mmanditslengthisL=500mm.Tensilecurveofcopperisshowninthefigure.Tomakeelongationofthecopperwireis30mmwhetistheforcePthatwemustact

?[例1-13]铜丝直径d=2mm,长L=500mm,材料的拉伸曲线如图所示。如欲使铜丝的伸长量为30mm,则大约需加多大的力P?

s(MPa)e(%)50Solution:Deformationmayexceedtherangeoflinearelasticity,thereforetheelasticlawisnotappliedhere.Calculationshouldbedoneinthefollowing:解:变形量可能已超出了“线弹性”范围,故,不可再应用“弹性定律”。应如下计算:Fromthetensilecurve:由拉伸图知:s(MPa)e(%)511.KnowingtheelasticmodulusofsteelisE=200GPa,theelasticmodulusofAluminumisE=71GPa.Trytocompare:①whichmaterialproducesalargerstrainwhentheyaresubjectedtothesamestress?②whichmaterialcorrespondstoalargestresswhentheyhavethesamestrain?

钢的弹性模量E=200GPa,铝的弹性模量E=71GPa。试比较在同一应力作用下,那种材料的应变大?在产生同一应变的情况下,那种材料的应力大?Chapter1Exercises第一章练习题522.Forthedifferentmembersmadeofasamematerial,dotheyhavethe

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论