版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
院DalianUniversityof第I单自由第2-3工程抗震InstituteofEarthquakeEngineering院§2-1基本动力体系的kcmkcmkcmDaliankcmDalianUniversityof工程抗震InstituteofEarthquakeEngineering
2014-12-01 院DalianUniversityofmcc工程抗震InstituteofEarthquakeEngineering
2014-12-01 院体系质量 弹性特性(刚度或柔度)k能量耗散机制或阻 DalianUniversityof每个特性都假设集结于DalianUniversityof研究单自由度体系的自由振动重要性在塔、单层厂房1、它代表了许多实际塔、单层厂房InstituteofEarthquakeEngineering2014-12- 2、它是分析多自由度InstituteofEarthquakeEngineering2014-12- 工程抗院v(t院v(tkmp(tcv(t受力Fsmp(tv(t受力Fsmp(tF(tdDalianUniversityof
2014-12-01 院
FsFdDalianUniversityof粘滞(或粘性)阻尼(ViscousDalianUniversityofRcdv(t)外力(External
InstituteofEarthquakeInstituteofEarthquakeEngineering2014-12- 院FFsFdp(t)kv(t)cv(t)p(t)DalianDalianUniversityof单自由度系统的运动方程(Equationof工程抗震InstituteofEarthquakeEngineering
2014-12-01 院DalianUniversityDalianUniversityof由于δv的任意性,且不等工程抗震InstituteofEarthquakeEngineering
2014-12-01 院DalianUniversityofFFs(t)Fs(t)vv(t)v(t)工程抗震InstituteofEarthquakeEngineering
2014-12-01 院
Fs(t)kv(t)kst动力平衡DalianUniversityofcv(t)kv(t)kstp(tDalianUniversityof去掉静力平衡Δst与时间无工程抗震InstituteofEarthquakeEngineering
2014-12-01 院院DalianUniversityDalianUniversityofInstituteofEarthquakeEngineering2014-12- 性、弹性、InstituteofEarthquakeEngineering2014-12- 性、弹性、小变形的情工程抗院k2ck2f(t)v(t)v(t)vtgItfs(t)/
fD
fs(t)/DalianUniversityoffI(tDalianUniversityof
(t)
(t)阻尼力和弹性力只与相对
构破坏的原因质越大,惯性力越InstituteofEarthquakeEngineering2014-12- InstituteofEarthquakeEngineering2014-12- 工程抗院gvt(t)v(t)vg
DalianUniversityof DalianUniversityof地面运动一般测量的是加速度,此时需要 加速度积分得地面运动的速度和位InstituteofEarthquakeInstituteofEarthquakeEngineering2014-12- 院§院DalianUniversityDalianUniversityof
自由Particular自由振
Free!=0强迫复复
v(t)齐线性方程,通解取工程抗震InstituteofEarthquakeEngineering
2014-12-01 院
RealGGRG
θ为幅DalianUniversityofGGcosiGsin(ei)DalianUniversityof(ei)
eicosisineicosisincos[eiei]/sini[eiei]/工程抗震InstituteofEarthquakeEngineering
2014-12-01 院院kcsms2k/m2
DalianUniversityof方DalianUniversityof相对于k和m的
2
css2m
运动方程的
s1v(t)G1
c2G2工程抗震InstituteofEarthquakeEngineering
2014-12-01 v(t)GeitG12v(t)(G1v(t)GeitG12院(G2RiG2I)(cos院v(t)(G1RG2R)cost(G1IG2I)sinti[(G1IG2I)cost(G1RG2R)sint]自由振动必须是实的,虚部项必DalianUniversityofG1RG2RGRG1IG2DalianUniversityofA2GR;B
v(t)2GRcost2GIsint2Gcos(tAcostBsinv(t) iG)eit iG 常微分方程中有如下定G
G2;
如果方程有复值解,则它的共数、复值解的实部和虚部也都InstituteofInstituteofEarthquakeEngineering2014-12-
相位
程的解 院Dalian院DalianUniversityof
v(t)2GRcost2GIsint2Gcos(tAcostB iGI
iGI v(0)A2G;v(0)B v(t)v(0)costv(0)sin
v(t)cos(tv(0)2v(0)2[tan1BA
工程抗震InstituteofEarthquakeEngineering
2014-12-01 院
v(t)cos(t[
tan1DalianUniversityoff;T2 自振周期或固有周期(NaturalPeriodof工程抗震InstituteofEarthquakeEngineering
2014-12-01 院院2css2m
sc(c(c)22临界c2m
低阻
阻尼cc c cDalianUniversityofs阻1DalianUniversityofs阻
c/cc2222
超阻
11D工程抗震InstituteofEarthquakeEngineering
2014-12-01 院c2mccs1s2c2mccs1s2初始条件v(0)
个相同的实
G1和G2均为实G2v(0)DalianUniversityofDalianUniversityof
G v(t)[v(0)(v(0)
2mω是系统不出现振荡的最工程抗震InstituteofEarthquakeEngineering
2014-12-01 超临界院DalianUniversityof
c/cc2s22
工程抗震InstituteofEarthquakeEngineering
2014-12-01 院v(t)c c
v(t)(G GeiwDtc cs
为使反应是实的,G1和G2必须为共轭D1阻尼体系的自D1阻尼体系的自振频采用三角函数 v(t)(AcoswtBsinw DalianUniversityofv(t)(w AsinwtwBcoswt)et(AcoswtBsinwt)et DalianUniversityofv(0)
Bv(0)Dv(t)(v(0)coswtv(0)v(0)sinw D工程抗震InstituteofEarthquakeEngineering
2014-12-01 院v(t)(v(0)coswtv(0)v(0)sinw Dv(t)cos(t D
[[]2D ;
具有不变的振动周期具有不变的振动周期工程抗InstituteofEarthquakeEngineering2014-12- DalianUniversityof院通常的工程结构,阻尼比ξ的值一般在1%~10%之间。故近似地认为ωD=ξξDalianUniversityof工程抗震InstituteofEarthquakeDalianUniversityof
2014-12-01 院t,tt,t2/v(t)cos(Dt)e相邻两个正波峰的比:
/
e2DalianUniversityofDalianUniversityof11
ln
/
2小阻尼情况近 Taylor
vn/
12
2!取前两
由此可见,对于粘滞阻尼自
动,任意相邻两振幅之间的是一个常工程抗震InstituteofEarthquakeEngineering
2014-12-01 院阻尼院1lnvn/ 1近似
DalianUniversityof这种测定阻尼系数的方法称为自振衰减法(FreeDalianUniversityof工程抗震InstituteofEarthquakeEngineering
2014-12-01 院
例p=20kips;v=0.20in
无阻尼振动频f1/T1/1.402f1 v=0.16in;1
阻尼特DalianUniversityofDalianUniversityofT2 1.40
阻尼系
ln(0.20/0.16)/2cccW 0.0496386
阻尼频11
0.9991/2
0.0355219201.548kips
6周后振
(v/v)6 工程抗震InstituteofEarthquakeEngineering
2014-12-01 院m求自振频m
DalianDalianUniversityof
m k
KK3EI工程抗震InstituteofEarthquakeEngineering
2014-12-01 院kkalDalianUniversityofml2kaDalianUniversityofm工程抗震InstituteofEarthquakeEngineering
2014-12-01 院1DalianUniversityofU DalianUniversityof2
T2
T1(mM)v2工程抗震InstituteofEarthquakeEngineering
2014-12-01 院2-DalianUniversityDalianUniversityof
第2工程抗震InstituteofEarthquakeEngineering
2014-12-01 院无阻尼自由振动v(t2GRcost2GIsint2Gcos(tAcostBsinDalianUniversityofDalianUniversityof临界阻
v(t)(GRiGI k/m2c2m
iGI
c c 超阻
11
低阻 v(t)(AcoswtBsinw 工程抗震InstituteofEarthquakeEngineering
2014-12-01 院
v(t 0 0
m
p0sin(tDalianDalianUniversityof
vc(t)AcostBsintvp(t)Csint0m2CsintkCsint0
sin确定常数
Cp0
;频率k12 频率 v(t)AcostBsintCsin工程抗震InstituteofEarthquakeEngineering
2014-12-01 院 v(t)AcostBsintCsin系数A和B通过初始条件确定。对于由静止开始的运动
Cp0 112;Cp0 112; 12 DalianDalianUniversityof
v(t)p0
(sintsin
R(t)v(t)
12R(t) (sin 12
p0/
12 工程抗震InstituteofEarthquakeEngineering
2014-12-01 院v(t) 1院v(t) 112(sintDalianUniversityofDalianUniversityof工程抗震InstituteofEarthquakeEngineering
2014-12-01 院p(t)院Cp0 1 2Cp0 1 2v(t)v0sintvcost
costcost
22/2/DalianUniversityof工程抗震InstituteofEarthquakeEngineering
2014-12-01 院院22/2/DalianUniversityof工程抗震InstituteofEarthquakeDalianUniversityof
2014-12-01 院v(院v(t)v0sintvcost0costcost 非常小,但不等于
ε为一非常小的v(t)
m(22
costcostDalianUniversityof 20 sin()tsin()t DalianUniversityofm(22
sintsin因为最后一个等式中的ε非常小,所以函数sinεt变化缓慢,它的周期等于2π/ε,该值很大。因此,上式可以视为周期为2π/ϖ,可变振幅等于p0/(2mεϖ)sinεt的振动,这种振动按下图所工程抗震InstituteofEarthquakeEngineering
2014-12-01 院v院v(t)v0sintvcost0costcost率sintsinDalianUniversityof因为最后一个等式中的ε非常小,所以函数sinεt变化缓慢,它的周期等于2π/ε,该值很大。因此,上式可以视为周期为2π/ϖ,可变振幅等于p0/(2mεϖ)sinεt的振动,这种振动按下图所DalianUniversityof工程抗震InstituteofEarthquakeEngineering
2014-12-01 院v(院v(t)sintvcostP 0 m(22costcost 20
t tv(t)0sintvcostlim
mInstituteofEarthquakeEngineering2014-12- 0L’Hospital上下求导随着时间线性增长,这种InstituteofEarthquakeEngineering2014-12- 0L’Hospital上下求导随着时间线性增长,这种称为 DalianUniversityof工程抗院InstituteofEarthquakeInstituteofEarthquakeEngineering2014-12- DalianUniversityof动力放大系数DynamicMagnification院v(t)院v(t)p0 112(sintsinD
D11β1DalianUniversityof工程抗震InstituteofEarthquakeDalianUniversityof
2014-12-01 院DalianUniversityof工程抗震InstituteofEarthquakeEngineeringDalianUniversityof
2014-12-01 院DalianUniversityof工程抗院DalianUniversityof
2014-12-01 11Dalian11DalianUniversityof
152.32/院工程抗震院
2014-12-01 D D院DalianUniversityof院DalianUniversityof
2014-12-01 院0 0m
用待定系数法求该微分方程DalianUniversityofvp(t)A1costA2DalianUniversityof (t)A2costA2sin A2costA2sint2AsintAcost
AcostAsint
工程抗震InstituteofEarthquakeEngineering
2014-12-01 ((21A2A)21t(A221A)sin22t0msin院DalianUniversityofDalianUniversityof
22A2A A22A2
m2224222
P0 k(12)2(2AP0(22A
1 m2224222
k(12)2(2工程抗震InstituteofEarthquakeEngineering
2014-12-01 院vp(t)sintA212A212 DalianUniversityof相位tg相位
2 1工程抗震InstituteofEarthquakeEngineering
2014-12-01 院方院方程的通
sin
t
tsint v(t)
BsintB
tAcostAsin 代入初始
v(0) 可DalianUniversityofDalianUniversityofv(t) 0 0sintvcos
初始条件的自由振瞬态反应很快 eesinsinDtsin sin tD伴生的自由振瞬态反应很快纯强迫振稳态谐振反工程抗震InstituteofEarthquakeEngineering
2014-12-01 院v(t)sint(12)2(2
[(12)sint2DalianUniversityofDalianUniversityofk
[(1
2
]1/
tg
1 k(12
sin
p0/工程抗震InstituteofEarthquakeEngineering
2014-12-01 院D [(12)2(2)2]1/2p0/DalianUniversityof工程抗震InstituteofEarthquakeDalianUniversityof
2014-12-01 院tg
1 DalianUniversityof工程抗震InstituteofEarthquakeEngineeringDalianUniversityof
2014-12- 院P0[(1院P0[(12)2(2)2ktg1DalianUniversityof
2014-12-01 院DalianUniversityof工程抗院DalianUniversityof
2014-12-01 Determine院
2DalianUniversityofThuswiththedataofDalianUniversityoftg(22)tg15(27.92162)
227.9Thesameresult(withinengineeringaccuracy)isgivenbythedataofthesecondtestInstituteofEarthquakeEngineering2014-12- ThesameresultsInstituteofEarthquakeEngineering2014-12- 工程抗院
D [(12)2(2)2]1/2R(t)
1
(sintsin
p0/ 无阻尼时,外载的频率等于DalianUniversityofDalianUniversityof对阻尼
D11/动力放大系dDd
12峰βDmax峰
21
DDInstituteofEarthquakeInstituteofEarthquakeEngineering2014-12- 院DalianUniversityof工程抗震InstituteofEarthquakeEngineering
2014-12- 院DalianUniversityof工程抗震院DalianUniversityof
2014-12-01 院DalianUniversityof院DalianUniversityof
2014-12-01 院§院•InstituteofEarthquakeEngineering2014-12-InstituteofEarthquakeEngineering2014-12- DalianUniversityof工程抗院
输(t)输(t)ggAP0 1k(12)2(2P1
k(12)2(2DD [(12)2(2)2]1/2p0/DDalianUniversityDalianUniversityofInstituteofEarthquakeInstituteofEarthquakeEngineering2014-12-
在β<0.6,ξ=0.7时,放倍数接近常量。仪器反应入幅值成正比。这种仪器作为低频加速度院
vg(t)vg02 t)2 g0D2v g0DalianUniversityofDalianUniversityof工程抗震InstituteofEarthquakeEngineering
2014-12-01 院这里只介绍简单的DalianUniversityofDalianUniversityof基础产生的InstituteofEarthquakeInstituteofEarthquakeEngineering2014-12- 院m p(t)p0DalianUniversityDalianUniversityof
弹性
稳态相对位v(t)p0DsintkfS(t)kv(t)p0DsintfD(t)cv(t)
p0Dcostk
2p0Dcost总反力幅
(t)[f2
p1(2)21(2)21(2)2支撑系统的传导比 TRfmax(t)/1(2)2工程抗震InstituteofEarthquakeEngineering
2014-12-01 k2ck2代入基底的运动vg0k 2p0单自由度隔振体系(支座扰动vg(t)vg0
运动方院院DalianUniversityofpDalianUniversityof
kvg
稳态响g)2gg)2g1(22
vt(t)
m2
传导比TR
g(t)/ g1(21(2 工程抗震InstituteofEarthquakeEngineering
2014-12-01 院Dalian院DalianUniversityof当频率较高时,传导比要较低频时低很多,因此,使系高频运动是有利的工程抗震InstituteofEarthquakeEngineering
2014-12-01 院隔振率 IE1 If
TRTRD1(2D[(12)2(2)2
Ifβ=
隔振体系只有在β>21/2时才有DalianUniversityof对于小阻尼情 DalianUniversityofIE22/2 22IE/1IE2 2/22m/k2W/kg / 21 21工程抗震InstituteofEarthquakeEngineering
2014-12-01 院院 21
隔振体系越柔越 DalianUniversityof工程抗震InstituteofEarthquakeDalianUniversityof
2014-12-01 例题3-例题3-院DalianUniversityofDeflectionssometimesdevelopinconcretebridgegirdersduetocreep,andifthebridgeconsistsofalongseriesofidenticalspans,thesedeformationswillcauseaharmonicexcitationinavehicletravelingoverthebridgeatconstantspeed.院DalianUniversityofInstituteofEarthquakeEngineering2014-12- is40percentofFigureE31showsahighlyidealizedmodelofthistypeofsystem,inwhichthevehicleweightis4000lb[1814kg]anditsspringstiffnessisdefinedbyatestwhichshowedthatadding100lb[45.36kg]causedadeflectionof0.08in[0.203cm].Thebridgeprofileisrepresentedbyasinecurvehavingawavelength(girderspan)of40ft[12.2m]anda(single)amplitudeof1.2in[3.05cm].FromthesedataitisdesiredtopredictthesteadystateverticalmotionsinthecarInstituteofEarthquakeEngineering2014-12- is40percentof工程抗院稳态响vt(t)院稳态响vt(t)vg12Dsint2DalianUniversityof
2014-12-01 院传导隔振率TR80/500IE10.16f弹簧刚kW/4stDalianUniversityof工程抗震InstituteofEarthquakeDalianUniversityof
2014-12-01 院第2章曾用自由振动衰减法计算结构的阻取自然对
lnvn/
m对数衰减 DalianUniversityDalianUniversityof放半功率每 能量损失InstituteofEarthquakeInstituteofEarthquakeEngineering2014-12- 院D [(12)2(2)2]1/2p0/dD 12d DalianDalianUniversityofDmax
21DmaxD11/max/0D0/需 使用谐振荷载的幅值InstituteofEarthquakeInstituteofEarthquakeEngineering2014-12- 院v(t)sintkp0[(12)2(2)2k反应幅值由阻尼控阻尼比由反应幅值降到峰2DalianUniversityof1/ 水平时的2DalianUniversityof
2
阻尼耗
2/20
)dtm2与22 成正工
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版货车司机雇佣劳动合同
- 2024汽车制造商关于新型汽车零部件采购的合同
- 夜间交通指示照明合同(2篇)
- 2024桥梁工程桥梁检测与评估承包合同样本2篇
- 2024年鸡蛋供货商协议
- 数字健康服务推广协议
- 土地居间合同1
- 16-2《登泰山记》(说课稿)高一语文同步高效课堂(统编版 必修上册)
- 2《观察蜗牛的反应》说课稿-2023-2024学年科学二年级上册湘科版
- 能源行业设备采购合同
- 《城市环境污染》课件
- 广西崇左凭祥海关缉私分局缉私辅警招聘笔试真题2023
- 食材质量控制方案
- CNC技理考(含答案)
- 员工互评表(含指标)
- 小收纳大世界-整li与收纳(黑龙江幼儿师范高等专科学校)知到智慧树答案
- 河南省郑州市2024-2025学年高一数学上学期期末考试试题含解析
- 2024-2025学年外研版七年级英语下册 Unit1单词背诵(不带音标)
- 餐厅清洁与打扫服务合同范本
- 期末试题-2024-2025学年人教PEP版英语六年级上册 (含答案)
- 孕产妇高危五色管理(医学讲座培训课件)
评论
0/150
提交评论