版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学科:数学年级:八年级课题:角的平分线性质授课教师:周邦益
学校:启东市建新中学
邮编:226221电子邮件:bzzby123@126.com
联系方式年级上册人教2011课标版12.3角的平分线的性质知识回顾1、角平分线的概念一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。oBCA12知识回顾2、点到直线距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。OPAB我的长度
如图,是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?CADB你能由上面的探究得出作已知角的平分线的方法吗?探究1:E角的平分线的作法证明:在△ACD和△ACB中
AD=AB(已知)
DC=BC(已知)
CA=CA(公共边)∴△ACD≌△ACB(SSS)∴∠CAD=∠CAB(全等三角形的对应边相等)∴AC平分∠DAB(角平分线的定义)尺规作角的平分线ABOMNC画法:
1.以O为圆心,适当长为半径作弧,交OA于M,交OB于N.2.分别以M,N为圆心.大于1/2MN的长为半径作弧.两弧在∠AOB的内部交于C.3.作射线OC.射线OC即为所求.ABMNC为什么OC是角平分线呢?
O想一想:已知:OM=ON,MC=NC。求证:OC平分∠AOB。证明:在△OMC和△ONC中,
OM=ON,
MC=NC,
OC=OC,∴△OMC≌△ONC(SSS)∴∠MOC=∠NOC
即:OC平分∠AOB1〉平分平角∠AOB2〉通过上面的步骤,得到射线OC以后,把它反向延长得到直线CD,直线CD与直线AB是什么关系?
3〉结论:作平角的平分线即可平分平角,由此也得到过直线上一点作这条直线的垂线的方法。ABOCD变式)ABOAOEBCPD
将∠
AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?
可以看一看,第一条折痕是∠AOB的平分线OC,第二次折叠形成的两条折痕PD,PE是角的平分线上一点到∠AOB两边的距离,这两个距离相等.折一折探究2角平分线的性质已知:如图,OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D,E。求证:PD=PE证明:∵PD⊥OA,PE⊥OB(已知)∴∠PDO=∠PEO=90(垂直的定义)在△PDO和△PEO中∴PD=PE(全等三角形的对应边相等)∠PDO=∠PEO∠AOC=∠BOCOP=OP∴△PDO≌△PEO(AAS)角的平分线上的点到这个角的两边的距离相等。DPEAOBC证明几何命题的一般步骤:1、明确命题的已知和求证2、根据题意,画出图形,并用数学符号表示已知和求证;3、经过分析,找出由已知推出求证的途径,写出证明过程。角平分线的性质定理:角的平分线上的点到角的两边的距离相等用符号语言表示为:AOBPED12∵∠1=∠2(或OP是平分∠BAC)
PD⊥OA,PE⊥OB∴PD=PE(角的平分线上的点到角的两边的距离相等)推理的理由有三个,必须写完全,不能少了任何一个。角平分线的性质角的平分线上的点到角的两边的距离相等。BADOPEC定理应用所具备的条件:
(1)角的平分线;(2)点在该平分线上;
(3)垂直距离。定理的作用:
证明线段相等。∵如图,AD平分∠BAC(已知)
∴
=
,()在角的平分线上的点到这个角的两边的距离相等。BDCD(×)判断:变式∵如图,DC⊥AC,DB⊥AB(已知)
∴
=
,()在角的平分线上的点到这个角的两边的距离相等。BDCD(×)∵AD平分∠BAC,DC⊥AC,DB⊥AB(已知)∴
=
,()
DBDC在角的平分线上的点到这个角的两边的距离相等。√不必再证全等思考:要在S区建一个集贸市场,使它到公路,铁路距离相等且离公路,铁路的交叉处500米,应建在何处?(比例尺1:20000)sO公路铁路解:
作夹角的角平分线OC,截取OD=2.5cm,D即为所求。DCsO公路铁路变式如图,∵OC是∠AOB的平分线,又________________∴PD=PE()PD⊥OA,PE⊥OBBOACDPE
角的平分线上的点到角的两边的距离相等
在△OAB中,OE是它的角平分线,且EA=EB,EC、ED分别垂直OA,OB,垂足为C,D.求证:AC=BD.OABECD例题变式
在△ABC中,∠
C=90°
,AD为∠BAC的平分线,DE⊥AB,BC=7,DE=3.求BD的长。EDCBA
如图,在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;求证:CF=EBACDEBF拓展提升◆这节课我们学习了哪些知识?小结1、“作已知角的平分线”的尺规作图法;2、角的平分线的性质:111角的平分线上的点到角的两边的距离相等。
∵OC是∠AOB的平分线,
又PD⊥OA,PE⊥OB∴PD=PE(角的平分线上的点到角的两边距离相等).EDOABPC几何语言:,1、在Rt△ABC中,BD是角平分线,DE⊥AB,垂足为E,DE与DC相等吗?为什么?ABCDE
2、如图,OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D、E,PD=4cm,则PE=__________cm.ADOBEPC当堂反馈43.如图,DE⊥AB,DF⊥BC,垂足分别是E,F,DE=DF,∠EDB=60°,则∠EBF=
度,BE=
。60
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋租赁协议2024年格式
- 电梯设备定制采购及精准安装服务协议
- 2024年度钢材交易协议范例
- 2024年外墙涂料买卖协议范本
- 高等教育教材建设的实践路径
- 乡村教育数字治理的实施策略
- 2024年男方不忠婚姻解除协议范本
- 2024年国际商业购销协议英文样本
- 2024年度品牌包装订购协议文本
- 2024年企业客服代表劳动协议参考稿
- 大班语言课《石头小猪》教案设计
- 肿瘤物理消融规范化培训考试题
- 采购管理制度设计方案毕业设计(2篇)
- 疾控中心:常见传染病防治手册
- 收银审核员考试:收银员试题及答案(三)
- 土地复垦施工组织设计58446
- 电大财务大数据分析编程作业5
- (正式版)HGT 2782-2024 化工催化剂颗粒抗压碎力的测定
- DG-TJ08-2413-2023 优.秀历史建筑外墙修缮技术标准
- 家用光伏发电储能装置的设计
- 2024-2029全球及中国客户服务BPO行业市场发展分析及前景趋势与投资发展研究报告
评论
0/150
提交评论