一元一次方程知识点与经典例题_第1页
一元一次方程知识点与经典例题_第2页
一元一次方程知识点与经典例题_第3页
一元一次方程知识点与经典例题_第4页
一元一次方程知识点与经典例题_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一,知识要点梳理知识点一:一元一次方程及解的概念一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。要点诠释:一元一次方程须满意下列三个条件:(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.2,方程的解:推断一个数是否是某方程的解:将其代入方程两边,看两边是否相等.知识点二:一元一次方程的解法1,方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。假如,则;(c为一个数或一个式子)。等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。假如,则;假如,则要点诠释:分数的分子,分母同时乘以或除以同一个不为0的数,分数的值不变。即:(其中m≠0)特殊须留意:分数的基本的性质主要是用于将方程中的小数系数(特殊是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6。方程的右边没有变化,这要与“去分母”区分开。2,解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤具体方法变形根据注意事项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,假如分子是多项式,则要加括号去括号先去小括号,再去中括号,最终去大括号乘法安排律,去括号法则1.安排律应满意安排到每一项2.留意符号,特殊是去掉括号移项把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同类项把方程中的同类项分别合并,化成“”的形式()合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数,得等式性质2分子,分母不能颠倒要点诠释:理解方程ax=b在不同条件下解的各种状况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有多数个解;③a=0,b≠0时,方程无解。牛刀小试例1,解方程(1)y-例2,由两个方程的解相同求方程中子母的值已知方程的解与方程的解相同,求m的值.例3,解方程知识与肯定值知识综合题型解方程:二,经典例题透析类型一:一元一次方程的相关概念1,已知下列各式:①2x-5=1;②8-7=1;③x+y;④x-y=x2;⑤3x+y=6;⑥5x+3y+4z=0;⑦=8;⑧x=0。其中方程的个数是()A,5B,6C,7D,8举一反三:[变式1]推断下列方程是否是一元一次方程:(1)-2x2+3=x(2)3x-1=2y(3)x+=2(4)2x2-1=1-2(2x-x2)[变式2]已知:(a-3)(2a+5)x+(a-3)y+6=0是一元一次方程,求a的值。[变式3](2011重庆江津)已知3是关于x的方程2x-a=1的解,则a的值是()A.-5B.5C.7D.2类型二:一元一次方程的解法解一元一次方程的一般步骤是:去分母,去括号,移项,合并同类项,系数化为1。假如我们在坚固驾驭这一常规解题思路的基础上,依据方程原形和特点,敏捷支配解题步骤,并且奇妙地运用学过的知识,就可以收到化繁为简,事半功倍的效果。1.巧凑整数解方程:2,举一反三:[变式]解方程:=2x-52..巧去括号解方程:4,举一反三:[变式]解方程:4.运用拆项法解方程:5,5.巧去分母解方程:6,举一反三:[变式](2011山东滨州)依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。解:原方程可变形为(__________________________)去分母,得3(3x+5)=2(2x-1).(__________________________)去括号,得9x+15=4x-2.(____________________________)(____________________),得9x-4x=-15-2.(____________________________)合并,得5x=-17.(合并同类项)(____________________),得x=.(_________________________)6.巧组合解方程:7,思路点拨:按常规解法将方程两边同乘72化去分母,但运算较困难,留意到左边的第一项和右边的第二项中的分母有公约数3,左边的第二项和右边的第一项的分母有公约数4,移项局部通分化简,可简化解题过程。7.巧解含有肯定值的方程:8,|x-2|-3=0思路点拨:解含有肯定值的方程的基本思想是先去掉肯定值符号,转化为一般的一元一次方程。对于只含一重肯定值符号的方程,依据肯定值的意义,直接去肯定值符号,化为两个一元一次方程分别解之,即若|x|=m,则x=m或x=-m;也可以依据肯定值的几何意义进行去括号,如解法二。举一反三:【变式1】(2011福建泉州)已知方程,则方程的解是________.;[变式2]5|x|-16=3|x|-4[变式3]8.利用整体思想解方程:9,思路点拨:因为含有的项均在“”中,所以我们可以将作为一个整体,先求出整体的值,进而再求的值。参考答案例1:解:是方程的是①④⑤⑥⑦⑧,共六个,所以选B总结升华:依据定义逐个进行推断是解题的基本方法,推断时应留意两点:一是等式;二是含有未知数,体现了对概念的理解与应用实力。举一反三1.解析:推断是否为一元一次方程须要对原方程进行化简后再作推断。答案:(1)(2)(3)不是,(4)是2.解析:分两种状况:(1)只含字母y,则有(a-3)(2a+5)=0且a-3≠0(2)只含字母x,则有a-3=0且(a-3)(2a+5)≠0不可能综上,a的值为。3.答案:B例2.解:移项,得。合并同类项,得2x=-1。系数化为1,得x=-。举一反三解:原方程可变形为=2x-5整理,得8x+18-(2+15x)=2x-5,去括号,得8x+18-2-15x=2x-5移项,得8x-15x-2x=-5-18+2合并同类项,得-9x=-21系数化为1,得x=。例4解:去括号,得去小括号,得去分母,得(3x-5)-8=8去括号,移项,合并同类项,得3x=21两边同除以3,得x=7∴原方程的解为x=7举一反三解:依次移项,去分母,去大括号,得依次移项,去分母,去中括号,得依次移项,去分母,去小括号,得,∴x=48例5解:原方程逆用分数加减法法则,得移项,合并同类项,得。系数化为1,得。例6解:原方程化为去分母,得100x-(13-20x)=7去括号,移项,合并同类项,得120x=20两边同除以120,得x=∴原方程的解为总结升华:应用分数性质时要和等式性质相区分。可以化为同分母的,先化为同分母,再去分母较简便。举一反三【答案】解:原方程可变形为(_分式的基本性质_)去分母,得3(3x+5)=2(2x-1).(_等式性质2_)去括号,得9x+15=4x-2.(去括号法则或乘法安排律_)(______移项_______),得9x-4x=-15-2.(等式性质1_)合并,得5x=-17.(合并同类项)(_______系数化为1____),得x=.(等式性质2)例7解:移项通分,得化简,得去分母,得8x-144=9x-99。移项,合并,得x=-45。例8解法一:移项,得|x-2|=3当x-2≥0时,原方程可化为x-2=3,解得x=5当x-2<0时,原方程可化为-(x-2)=3,解得x=-1。所以方程|x-2|-3=0的解有两个:x=5或x=-1。解法二:移项,得|x-2|=3。因为肯定值等于3的数有两个:3和-3,所以x-2=3或x-2=-3。分别解这两个一元一次方程,得解为x=5或x=-1。举一反三1.【答案】2.解:5|x|-3|x|=16-42|x|=12|x|=6x=±63.解:|3x-1|=83x-1=±83x=1±83x=9或3x=-7x=3或例9解:移项通分,得:化简,得:移项,系数化1得:总结升华:解一元一次方程有一般程序化的步骤,我们在解一元一次方程时,既要学会按部就班(严格按步骤)地解方程,又要能见机行事(敏捷打乱步骤)解方程。对于一般解题步骤与解题技巧来说,前者是基础,后者是机灵,只有真正驾驭了一般步骤,才能熟能生巧。三,课堂练习一,选择题1,已知下列方程:(1)x-2=;(2)0.3x=1;(3)=5x-1;(4)x-4x=3;(5)x=0;(6)x+2y=0.其中一元一次方程的个数是()A2B3C4D52,下列四组变形中,正确的是()A由5x+7=0,得5x=-7B由2x-3=0,得2x-3+3=0C由=2,得x=D由5x=7,得x=353,一个水池有甲,乙两个水龙头,单独开甲水龙头2小时可把空池灌满;单独开乙水龙头3小时可把空池灌满,若同时开放两个水龙头,灌满空池需()A小时B小时C2小时D3小时4,下列方程中,是由方程7x-8=x+3变形而得到的是()A7x=x+5B7x+5=xC6x=11D-8+3=-6x5,下列方程的变形中,是移项的是()A由3=x,得x=3B由6x=3+5x,得6x=5x+3C由2x=-1,得x=-D由2x-3=x+5,得2x-x=5+36,方程6x=3+5x的解为()Ax=2Bx=3Cx=-2Dx=-37,方程4(a-x)-4(x+1)=60的解是x=-1,则a为()A-14B20C14D-168,动物园的门票售价:成人50元/张,儿童30元/张。某日动物园售出门票700张,共得29000元。设儿童票售出x张,依题意可列出下列哪个一元一次方程()A,30x+50(700-x)=29000B,50x+30(700-x)=29000C,30x+50(700+x)=29000D,50x+30(700+x)=290009,解方程-=1,去分母正确的是()A2(X-1)-3(4X-1)=1B2X-1-12+X=1C2(X-1)-3(4-X)=6D2X-2-12-3X=610,假如-2的倒数是3,则x的值是()A,-3B,-1C,1D,311,超市同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则这次出售中商场()A不赔不赚B赚160元C赚80元D赔80元12,笼中有鸡兔共12只,共40条腿,设鸡有X只,依据题意,可列方程为()A2(12-X)+4X=40B4(12-X)+2X=40C2X+4X=40D-4(20-X)=X12,已知下列方程:=1\*GB3①;=2\*GB3②;=3\*GB3③;=4\*GB3④;=5\*GB3⑤;=6\*GB3⑥.其中一元一次方程的个数是().A.2B.3C.4 D.513,已知关于的方程的解是,则的值是().A.-5B.-6C.-7 D.814,方程移项后,正确的是().A.B.C.D.15,方程,去分母得().A.B.C.D.16,甲,乙两人骑自行车同时从相距65km的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5km,则乙的时速是().A.12.5kmB.15kmC.17.5kmD.20km17,某商店卖出两件衣服,每件60元,其中一件赚25%,另一件赔25%,则这两件衣服售出后商店是().A.不赚不赔B.赚8元C.亏8元D.赚15元二,填空题:1,圆的周长为4,半径为x,列出方程为。2,已知方程(m-2)x+5=9是关于x的一元一次方程,则m=.3,已知代数式x+2y的值是3,则代数式2x+4y+1的值是。4,3ab与2ab是同类项,则m=.5,若+(y+1)=0,则x-y=.6,某商品的进价为250元,为了削减库存,确定每件商品按标价打8折销售,结果每件商品仍获利10元,则原来标价为。7,当x=时,的值是0.8,7.1班发作业本,若每人发4本,则还余12本,若每人发5本,则还少18本,则该班出名学生。9,使为关于的一元一次方程的=______(写出一个你喜爱的数即可).10,当=______时,式子的值是-3.11,若与在某运算中可以合并,则,.12,设某数为,依据下列条件列出方程:(1)某数的比它的相反数大5.______________________________;(2)某数的与的差刚好等于这个数的2倍.________________________.13,某次数学竞赛共出了15道选择题,选对一题得4分,选错一题扣2分.若某同学得36分,他选对了________道题(不选算错).14,某商场对某种商品作调价,按原价8折出售,此时商品的利润率为10%,此商品的进价是1000元,则商品的原价是________.15,某人将1000元存入银行,定期两年,若年利率为2.27%,则两年后利息为________元,若扣除20%的利息税,则实际得到的利息为________元,银行应付给该储户本息共____________元.16,依据你们班男,女生人数编一道应用题:________________________________________________________________________________________________________.假设适当的未知数,列出方程_______________________________________.三,解答题:1,解方程(1)6x-3(5x-2)=0(2)20-2x=x-1(3)=x-2(4)-=2(5)(6)(7)(8)家庭练习填空题:1,已知方程(a-2)x|a|-1=1是一元一次方程,则a=______,x=______.2,下列说法:①,等式是方程;②,x=4是方程5x+20=0的解;③,x=-4和x=6都是方程│x-1│=5的解.其中说法正确的是____.(填序号)3,已知代数式与的值互为相反数,则的值等于________4,假如方程______.5,三个连续奇数的和是75,则这三个数分别是__________。6,我校球类联赛期间买回排球和足球共16个,花去900元钱,已知排球每个42元,足球每个80元,设排球买了x个。则可列程为,7,小慧在一张日历的一横列上圈了连续的四个数,它们的和为22,这四个数为8,数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3分,要得到34分必需答对的题数是,9,自来水公司为激励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按0.8元收费,超过10吨的部分按每吨1.5元收费,王老师三月份平均水费为每吨1.0元,则王老师家三月份用水_______吨.二,选择题:1,若a=b,则下列式子正确的有()①a-2=b-2②a=b③-a=-b④5a-1=5b-1.(A)1个 (B)2个 (C)3个 (D)4个2,下列变形中,正确的是A,若ac=bc,则a=b。B,若,则a=bC,=,则a=b。D,若a=b则a=b3,给出下面四个方程及其变形:①;②;③;④;其中变形正确的是()A.①③④B.①②④ C.②③④ D.①②③4,假如方程6x+3a=22与方程3x+5=11的解相同,则a=()A.B.C.-D.-5,将方程去分母,得到,错在()A,最简公分母找错B,去分母时,漏乘3项C,去分母时,分子部分没有加括号D,去分母时,各项所乘的数不同6,初一(一)班实行了一次集邮展览,展出的邮票比平均每人3张多24张,比平均每人4张少26张,这个班共展出邮票的张数是()A.164B.178C.168D.1747,某商场卖出两个进价不同的手机,都卖了1200元,其中一个盈利50%,另一个亏本20%,在这次买卖中,这家商场()A.不赔不赚B.赔100元C.赚100元D.赚360元8,某牧场放养的鸵鸟和奶牛一共70只,已知鸵鸟和奶牛的腿数之和为196条,则鸵鸟的头数比奶牛多()A,20只B,14只C,15只D,13只三,运算题:1,2,3,4,5.6..四.当x为何值时,代数式与的值大2.三,一元一次方程应用题(找出等量关系)一,列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.1,数字问题要搞清晰数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a,b,c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:100a+10b+c。例1,若三个连续的偶数和为18,求这三个数。例2,一个两位数,个位上的数是十位上的数的2倍,假如把十位与个位上的数对调,则所得的两位数比原两位数大36,求原来的两位数等量关系:原两位数+36=对调后新两位数例3,有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位依次对调(个位变百位)所得的新数比原数的2倍少49,求原数。分析:然后抓住数字间或新数,原数之间的关系找等量关系列方程.2,日历中的规律:横行相邻两数相差____竖行相邻两数相差___。例1,假如今日是星期三,则一年(365天)以后的今日是星期___________例2,在日历表中,用一个正方形随意圈出2x2个数,则它们的和肯定能被___________整除。A3B4C5D6例3,假如某一年的5月份中,有5个星期五,且它们的日期之和为80,则这个月的4号是星期几?3,等积变形问题常用等量关系为:①形态面积变了,周长没变;②原料体积=成品体积。例1,用直径为4cm的圆钢,锻造一个重0.62kg的零件毛坯,假如这种钢每立方厘米重7.8g,应截圆钢多长?例2.用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm?(结果保留整数)4,和,差,倍,分问题:倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。多少关系:通过关键词语“多,少,和,差,不足,剩余……”来体现。(1)劳力调配问题:这类问题要搞清人数的变化.例1.某厂一车间有64人,二车间有56人。现因工作须要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?例2.甲,乙两车间各有工人若干,假如从乙车间调100人到甲车间,则甲车间的人数是乙车间剩余人数的6倍;假如从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。(2)配套问题:例1,某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何安排生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)例2.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别支配多少名工人加工大,小齿轮,才能使每天加工的大小齿轮刚好配套?分析:列表法。

每人每天人数数量大齿轮16个x人16x小齿轮10个人等量关系:小齿轮数量的2倍=大齿轮数量的3倍解:设分别支配x名,名工人加工大,小齿轮答:略.(3)安排问题:例1.学校安排学生住宿,假如每室住8人,还少12个床位,假如每室住9人,则空出两个房间。求房间的个数和学生的人数。例2.三个正整数的比为1:2:4,它们的和是84,则这三个数中最大的数是几?(比例安排问题常用等量关系:各部分之和=总量。)(4)年龄问题:例1,甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是多少岁?例2,小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄。

5,工程问题工程问题中的三个量及其关系为:工作总量=工作效率×工作时间常常在题目中未给出工作总量时,设工作总量为单位1。例1.一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲,乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?分析设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。解:设乙还需x天完成全部工程,设工作总量为单位1,由题意得,(EQ\f(1,15)+EQ\f(1,12))×3+EQ\f(x,12)=1,...................例2,在西部大开发中,基础建设优先发展,甲,乙两队共同承包了一段长6500米的高速马路工程,两队分别从两端施工相向前进,甲队平均每天可完成480米,乙队平均每天比甲队多完成220米,乙队比甲队晚一天开工,乙队开工几天后两队完成全部任务?6,①打折销售问题(1)销售问题中常出现的量有:进价,售价,标价,利润等(2)基本关系式:①利润=售价—进价;②售价=标价×折数;③利润率=利润/进价。由①②可得出④利润=标价×折数-进价。由③④可得出⑤利润率=。②市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.例1,一件衣服标价是200元,现打7折销售。问:买这件衣服须要多少钱?若已知这件衣服的成本(进价)是115元,则商家卖出这件衣赚了多少钱?利润是多少?例2,某商场售货员同时卖出两件上衣,每件都以135元售出,若按成本计算,其中一件赢利25%,另一件亏损25%,问这次售货员是赔了还是赚了?7,行程问题。(行程问题可以采纳画示意图的协助手段来扶植理解题意,并留意两者运动时动身的时间和地点)要驾驭行程中的基本关系:路程=速度×时间。①相遇问题(相向而行),这类问题的相等关系是:甲走的路程+乙走的路程=全路程②追及问题(同向而行),这类问题的等量关系是:同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲,乙相距的路程同地不同时;甲的时间=乙的时间-时间差甲的路程=乙的路程解此类题的关键是抓住甲,乙两物体的时间关系或所走的路程关系,一般状况下问题就能迎刃而解。并且还常常借助画草图来分析,理解行程问题。

例1.甲,乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。(1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清晰相向,相背,同向等的含义,弄清行驶过程。故可结合图形分析。(1)分析:相遇问题,画图表示为:等量关系是:慢车走的路程+快车走的路程=480公里。解:设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480解这个方程,230x=390∴x=1EQ\f(16,23)答:略.(2)分析:相背而行,画图表示为:等量关系是:两车所走的路程和+480公里=600公里。解:设x小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,230x=120∴x=EQ\f(12,23)答:略.(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。解:设x小时后两车相距600公里,由题意得,(140-90)x+480=60050x=120∴x=2.4答:略.(4)分析:追及问题,画图表示为:等量关系为:快车的路程=慢车走的路程+480公里。解:设x小时后快车追上慢车。由题意得,140x=90x+480解这个方程,50x=480∴x=9.6答:略.(5)分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。解:设快车开出x小时后追上慢车。由题意得,140x=90(x+1)+48050x=570解得,x=11.4答:略.

③环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和=一圈的路程;同地同向而行的等量关系是两人所走的路程差=一圈的路程。航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度例:一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行须要2小时,逆水航行须要3小时,求两码头的之间的距离?抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.1,A,B两地相距150千米。一辆汽车以每小时50千米的速度从A地动身,另一辆汽车以每小时40千米的速度从B地动身,两车同时动身,相向而行,问经过几小时,两车相距30千米?2,甲,乙两人练习100米赛跑,甲每秒跑7米,乙每秒跑6.5米,假如甲让乙先跑1秒,则甲经过几秒可以追上乙?3,一架飞机飞行在两个城市之间,顺风要2小时45分,逆风要3小时,已知风速是20千米/小时,则两城市间的距离为多少?4,一列火车以每分钟1千米的速度通过一座长400米的桥,用了半分钟,则火车本身的长度为多少米?5,火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论