版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题讲座:
高考试题中数学建模的考查趋势分析及其教学建议高考试题中数学建模的考查趋势分析及其教学建议一、数学建模素养的意义二、数学建模在高中数学内容的渗透三、高考试题中数学建模的考查趋势分析四、对教学的建议一、数学建模素养的意义(一)数学建模的内涵(二)数学建模的价值(三)数学建模的目标(四)数学建模能力的构成一、数学建模素养的意义
数学建模是通过对实际问题的简化和抽象后,用数学原理建立模型,用数学方法解决问题,再回到实际情境中解释、验证所得结果的数学活动过程。它主要包括分析抽象、建立模型、求解模型和验证修改四个阶段。其过程大致可用下图表示:实际问题分析抽象建立模型求解模型验证修改(一)数学建模的内涵一、数学建模素养的意义
数学模型构建了数学与外部世界的桥梁,是数学应用的重要形式。数学建模是应用数学解决实际问题的基本手段,是推动数学发展的外部驱动力。(二)数学建模的价值一、数学建模素养的意义
通过数学建模核心素养的培养,学生能够掌握数学建模的过程,积累用数学的语言表达实际问题的经验,提升应用能力和创新意识。(三)数学建模的目标一、数学建模素养的意义1、阅读理解能力2、抽象概括能力3、符号表示能力4、模型选择能力5、数学运算能力(四)数学建模能力的构成一、数学建模素养的意义1、阅读理解能力。
阅读理解能力是学生按照一定思路、步骤感知实际问题的信息,在对信息分析和思考后,获得对问题感性认识的能力。阅读理解能力较好的学生,读得准、读得快、理解快、理解深,这是数学建模的前提。如,1999年上海高考卷第22题的问题情境是冷轧钢板的过程,题中出现了“减薄率”这一专门术语,并给出了即时定义。能否深刻理解该定义,取决于学生阅读理解能力,这将直接影响该问题的数学建模。一、数学建模素养的意义1、阅读理解能力。
一、数学建模素养的意义2、抽象概括能力。
将感性材料去伪存真,对问题适当简化,忽略次要因素,抓住主要矛盾,运用判断推理等发现问题本质,在提炼、抽象的基础上,将实际问题转化为数学问题的能力。抽象概括能力较强的学生很容易将实际问题抽象为数学问题,这是数学建模的基础。一、数学建模素养的意义2、抽象概括能力。
如,将银行计息的“复利公式”类比和推广到计算细胞分裂、人口增长等实际问题,这不仅给了学生解决实际问题一把通用的钥匙,也是培养和提高学生抽象概括能力的重要方式。一、数学建模素养的意义3、符号表示能力。
把实际问题中表示数量关系的文字、图像“翻译”成数学符号语言,即数、式子、方程、函数、不等式等的能力。这种“翻译”是数学建模的基础性工作。一、数学建模素养的意义3、符号表示能力。
一、数学建模素养的意义4、模型选择能力。
选择数学模型是数学建模中最重要的能力。同一个数学问题可以有多个数学模型,同一个数学模型可以用于多个实际问题,怎样选择一个最佳的模型,直接关系到问题解决的质量,是学生的综合能力的体现,是数学建模的关键能力。一、数学建模素养的意义4、模型选择能力。
如,甲、乙两人相距10千米,他们同时相向而行,甲的速度为2千米/小时,乙的速度为3千米/小时。两人出发时,甲身边的一只小狗以5千米/小时的速度飞奔向乙,遇到乙后,又马上飞奔向甲,如此反复,问甲、乙相遇时小狗跑的总路程。如果把该问题建模为数列求和,求出每次小狗与乙或甲相遇时跑的路程,再求所有路程的总和,计算十分麻烦。如果把问题建模为总路程与总时间的关系,求出甲、乙相遇的时间,即小狗跑的总时间,用总时间乘以小狗的速度求得总路程,计算简单,这个模型十分简练。一、数学建模素养的意义5、数学运算能力。
复杂的建模问题一般运算量比较大,可能还有近似计算,图像分析等,所以即使数学模型正确合理,如果运算能力欠缺,有时也会前功尽弃。数学运算能力也是数学建模能力的重要构成,在建模教学中只重视抽象、概括和推理,不重视计算的做法是不可取的。(一)新课标的要求二、数学建模在高中数学内容的渗透(二)高中常见数学模型(一)新课标的要求
新数学课程标准的一个重点是让学生全面了解数学背景、意义和价值,尤其是它的应用性与方法。数学建模是达到此目标的一个极好途径。在近几年的高考中,这方面题目的数量和分值逐渐增加,特别是考查的题材更贴近实际生活,灵活性也大大提高,那就要求在教学中更应注重培养学生的数学建模素养。因此,在高中阶段渗透建模思想是非常必要的。二、数学建模在高中数学内容的渗透数学建模的教学重点在新课程中规定的应用:1、初步掌握建立函数模型解决问题的过程和方法,能应用导数等解决一些简单的实际问题。2、等差数列和等比数列有着广泛的应用,教学中应重视通过具体实例(如教育贷款、购房贷款、放射性物质的衰变、人口增长等),使学生理解这两种数列模型的作用,培养学生从实际问题中抽象出数列模型的能力。3、会从实际情境中抽象出一些简单的线性规划问题并加以解决;会用基本不等式解决实际中简单的最值问题.4、能运用三角函数知识分析处理实际问题,掌握利用正弦定理、余弦定理解决实际应用;二、数学建模在高中数学内容的渗透数学建模的教学重点在新课程中规定的应用:5、了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。6、几何教学应注意引导学生通过对实际模型的认识,并能解决一些简单的推理论证及应用问题。7、初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题;8、能用抽样方法解决简单的实际问题,会用样本估计总体的思想解决一些简单的实际问题;能把一些实际问题抽象成两点分布、超几何分布、二项分布、正态分布等模型加以解决。二、数学建模在高中数学内容的渗透(二)高中常见数学模型:1、函数模型;2、数列模型;3、不等式(组)模型;4、三角模型;5、平面解析几何模型;6、立体几何模型;7、排列组合模型;8、概率统计模型。二、数学建模在高中数学内容的渗透1、函数模型
高中常见的函数有:一次函数、二次函数、指数函数、对数函数、幂函数、分段函数等。
函数模型经常涉及到成本投入、利润产出及关于效益、价格、流量、面积、体积等实际问题。解答这类问题一般要利用数量关系,列出目标函数式,然后用函数有关知识和方法加以解决。大量的实际问题隐含着量与量之间的关系,建立量与量的函数关系,就成为解题的关键,一旦函数关系建立了,即可用函数知识来解决实际问题。二、数学建模在高中数学内容的渗透(1)一次函数模型
二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透(2)二次函数模型
二、数学建模在高中数学内容的渗透(2)二次函数模型
二、数学建模在高中数学内容的渗透(3)指数函数模型
二、数学建模在高中数学内容的渗透(3)指数函数模型
二、数学建模在高中数学内容的渗透(4)对数函数模型
二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透(5)幂函数模型
二、数学建模在高中数学内容的渗透(5)幂函数模型
二、数学建模在高中数学内容的渗透(6)分段函数模型
二、数学建模在高中数学内容的渗透(6)分段函数模型
二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透2、数列模型
生活中频频出现的存款利息、分期付款、环境保护、增长率、贷款、房贷等热点问题,常常需要用数列的知识来解答。通过数列模型的建立,将有助于我们在生活中更好地进行优化决策,培养我们的应用意识、主体意识和创新精神,真正做到“学以致用”。常见的数列模型有:等差数列模型,等比数列模型等。二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透3、不等式(组)模型
不等式(组)模型经常涉及到统筹安排、最佳决策、最优化、水土流失等一些有关不等量或最值的实际问题。解答这类问题一般是先列出不等式(组),然后用不等式知识求解,关键是找出各变量的关系。二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透二、数学建模素养在高中数学内容的渗透二、数学建模在高中数学内容的渗透4、三角模型
二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透5、平面解析几何模型
二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透6、立体几何模型
二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透7、排列组合模型
二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透8、概率统计模型8、概率统计模型二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透二、数学建模在高中数学内容的渗透三、高考试题中数学建模的考查趋势分析(一)综合性(二)现实性(三)文化性(四)创新性三、高考试题中数学建模的考查趋势分析1、综合性三、高考试题中数学建模的考查趋势分析1、综合性三、高考试题中数学建模的考查趋势分析三、高考试题中数学建模的考查趋势分析三、高考试题中数学建模的考查趋势分析三、高考试题中数学建模的考查趋势分析2、现实性三、高考试题中数学建模的考查趋势分析三、高考试题中数学建模的考查趋势分析三、高考试题中数学建模的考查趋势分析三、高考试题中数学建模的考查趋势分析三、高考试题中数学建模的考查趋势分析3、文化性三、高考试题中数学建模的考查趋势分析答案:B三、高考试题中数学建模的考查趋势分析答案:B三、高考试题中数学建模的考查趋势分析三、高考试题中数学建模的考查趋势分析三、高考试题中数学建模的考查趋势分析4.创新性三、高考试题中数学建模的考查趋势分析三、高考试题中数学建模的考查趋势分析三、高考试题中数学建模的考查趋势分析四、对教学的建议1、加强审题阅读训练,夯实数学建模基础;2、优化课堂教学过程,提高数学建模能力;3、重视教材题目挖掘,掌握数学建模模型;5、关注数学实际应用,开阔数学建模眼界。4、强化运算能力培养,完善数学建模过程;四、对教学的建议1、加强审题阅读训练,夯实数学建模基础四、对教学的建议1、加强审题阅读训练,夯实数学建模基础第一,仔细阅读,尝试将题目中的文字语言用数学语言表述出来;第二,通过阅读,找出题中的关键元素,如已知什么、要求做什么,抓住反映数量的关键词,充分挖掘隐含条件,弄清已知和未知之间有什么关系,缺什么条件;第三,利用示意图、表格、图象等,进行分析、联想、类比,发现问题中的数量关系,并把这些数量关系用数学符号表示出来,把一个实际问题转化为数学问题,从而利用数学建模思想解决问题。四、对教学的建议2、优化课堂教学过程,提高数学建模能力(1)为了培养高中学生的建模意识,数学教师应首先需要提高自己的建模意识。(2)在数学课堂教学过程中教师要根据教学内容有意识地渗透数学建模的思想和方法。(3)在数学教学活动中,专门开展以数学建模为主题的教学环节。四、对教学的建议(1)为了培养高中学生的建模意识,数学教师应首先需要提高自己的建模意识。
教师是关键,首先要保证教师具有扎实的专业基础是保证教学成功的前提。教师首先应转变观念,教学观念要有明显改变,教学方法要符合高中数学新课程理念,数学建模的教学内容的分析要透彻、处理要得当,重点、难点要把握准确等,教师的课堂教学设计要符合实际,选择的教学案例和方法要符合学生的知识水平与心理特征,鼓励学生积极充分地参与教学活动。2、优化课堂教学过程,提高数学建模能力四、对教学的建议(2)在数学课堂教学过程中教师要根据教学内容有意识地渗透数学建模的思想和方法。
数学课堂教学中老师要最大限度地激发学生的兴趣和探索意识,要采取循序渐进的方法,由简到繁,由易到难的顺序,渗透数学建模的思想和方法,逐步提高学生对数学建模的理解和认识,从而提高数学建模成功的机会和解决问题的效率。在教学过程中把这一套系统的建模方法逐步交给学生,给学生一些在数学模型的应用的初步体验。四、对教学的建议3)在数学教学活动中,专门开展以数学建模为主题的教学环节。
在学完某一内容后,教师专门提出一个事先设计好的,开放性的并与该学习内容有关的数学建模问题,引导学生主动查阅文献资料,鼓励学生积极开展讨论,主动探索解决问题。通过教师的引导以及所学知识的具体应用和对具体问题的解决,使学生能积极合作完成数学建模的问题。这一过程不仅使他们对新知识有更好的认识,而且增强了他们利用外界工具的能力和与他人合作的能力,同时也增强他们的综合素质和创新能力以及获取新知识的能力。四、对教学的建议3、重视教材题目挖掘,掌握数学建模模型四、对教学的建议3、重视教材题目挖掘,掌握数学建模模型四、对教学的建议4、强化运算能力培养,完善数学建模过程运算能力是思维能力和运算技能的结合,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗行业人力资源工作总结
- 金融服务员工作总结
- 2024年度单位水电费承包与设施安全运营协议5篇
- 大班下学期三月工作计划3篇
- 4大招帮助孩子告别不自信
- 2024年版短期急聘工人劳动协议样式版B版
- 胡同保安工作总结
- 2024年度环保设备定期检修与更新合同3篇
- 房子委托租协议
- 2024年度地毯材料进出口贸易合同3篇
- 湖北省武汉市硚口区2023-2024学年七年级上学期期末数学试题(含答案)
- 重庆市垫江区2023-2024学年部编版七年级上学期期末历史试卷
- 云南省昆明市呈贡区2023-2024学年九年级上学期期末数学试卷+
- 云南省昭通市巧家县2023-2024学年五年级上学期期末考试语文试卷
- 有趣的英语小知识讲座
- 2024年拟攻读博士学位期间研究计划
- 国际知名高科技园区发展及对我国的经验借鉴
- 财政投资评审项目造价咨询服务方案审计技术方案
- 2023年民兵冬训总结
- 单位就业人员登记表
- 从 2023-上传通知测试
评论
0/150
提交评论