




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列各组图形中,是相似图形的是()A. B.C. D.2.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.如图,一张矩形纸片ABCD的长AB=xcm,宽BC=ycm,把这张纸片沿一组对边AB和D的中点连线EF对折,对折后所得矩形AEFD与原矩形ADCB相似,则x:y的值为()A.2 B. C. D.4.如图,矩形AOBC,点C在反比例的图象上,若,则的长是()A.1 B.2 C.3 D.45.已知2x=3y,则下列比例式成立的是()A. B. C. D.6.如图,在中,弦AB=12,半径与点P,且P为的OC中点,则AC的长是()A. B.6 C.8 D.7.关于x的一元二次方程2x2﹣mx﹣3=0的一个解为x=﹣1,则m的值为()A.﹣1 B.﹣3 C.5 D.18.如图,在□ABCD中,E、F分别是边BC、CD的中点,AE、AF分别交BD于点G、H,则图中阴影部分图形的面积与□ABCD的面积之比为()A.7:12 B.7:24 C.13:36 D.13:729.如图点D、E分别在△ABC的两边BA、CA的延长线上,下列条件能判定ED∥BC的是().A.; B.;C.; D..10.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2 B.3 C.4 D.511.如图,在△ABC与△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,连接BD、CE,若AC︰BC=3︰4,则BD︰CE为()A.5︰3 B.4︰3 C.︰2 D.2︰12.若抛物线与坐标轴有一个交点,则的取值范围是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,那么菱形ABCD的面积是____.14.如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点,当钟面显示点分时,分针垂直与桌面,点距离桌面的高度为公分,若此钟面显示点分时,点距桌面的高度为公分,如图2,钟面显示点分时,点距桌面的高度_________________.15.已知是方程的两个实数根,则的值是____.16.方程的解是__________.17.在-1、0、、1、、中任取一个数,取到无理数的概率是____________18.两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC=DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的有________.(填序号)①小红的运动路程比小兰的长;②两人分别在1.09秒和7.49秒的时刻相遇;③当小红运动到点D的时候,小兰已经经过了点D;④在4.84秒时,两人的距离正好等于⊙O的半径.三、解答题(共78分)19.(8分)已知:点M是平行四边形ABCD对角线AC所在直线上的一个动点(点M不与点A、C重合),分别过点A、C向直线BM作垂线,垂足分别为点E、F,点O为AC的中点.⑴如图1,当点M与点O重合时,OE与OF的数量关系是.⑵直线BM绕点B逆时针方向旋转,且∠OFE=30°.①如图2,当点M在线段AC上时,猜想线段CF、AE、OE之间有怎样的数量关系?请你写出来并加以证明;②如图3,当点M在线段AC的延长线上时,请直接写出线段CF、AE、OE之间的数量关系.20.(8分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.21.(8分)已知关于x的方程x2+mx+m-2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.22.(10分)计算:(1)(2)23.(10分)温州某企业安排名工人生产甲、乙两种产品,每人每天生产件甲或件乙,甲产品每件可获利元.根据市场需求和生产经验,乙产品每天产量不少于件,当每天生产件时,每件可获利元,每增加件,当天平均每件利润减少元.设每天安排人生产乙产品.根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲_______________________乙_____________若每天生产甲产品可获得的利润比生产乙产品可获得的利润多元,求每件乙产品可获得的利润.24.(10分)在平面直角坐标系xOy中,△ABC的位置如图所示.
(1)分别写出△ABC各个顶点的坐标;
(2)分别写出顶点A关于x轴对称的点A′的坐标、顶点B关于y轴对称的点B′的坐标及顶点C关于原点对称的点C′的坐标;
(3)求线段BC的长.25.(12分)如图,已知点B的坐标是(-2,0),点C的坐标是(8,0),以线段BC为直径作⊙A,交y轴的正半轴于点D,过B、C、D三点作抛物线.(1)求抛物线的解析式;(2)连结BD,CD,点E是BD延长线上一点,∠CDE的角平分线DF交⊙A于点F,连结CF,在直线BE上找一点P,使得△PFC的周长最小,并求出此时点P的坐标;(3)在(2)的条件下,抛物线上是否存在点G,使得∠GFC=∠DCF,若存在,请直接写出点G的坐标;若不存在,请说明理由.26.一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据相似图形的概念:如果两个图形形状相同,但大小不一定相等,那么这两个图形相似,直接判断即可得出答案,【详解】解:.形状不相同,不符合相似图形的定义,此选项不符合题意;.形状不相同,不符合相似图形的定义,此选项不符合题意;.形状不相同,不符合相似图形的定义,此选项不符合题意;.形状相同,但大小不同,符合相似图形的定义,此选项符合题意;故选:.【点睛】本题考查的知识点是相似图形的定义,理解掌握概念是解题的关键.2、C【分析】根据轴对称图形和中心对称图形的定义进行判断即可.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、既是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选C.【点睛】本题考查了轴对称图形和中心对称图形的定义,属于基础题型,熟知轴对称图形和中心对称图形的定义是正确判断的关键.3、B【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】解:∵四边形ABCD是矩形,宽BC=ycm,
∴AD=BC=ycm,
由折叠的性质得:AE=AB=x,
∵矩形AEFD与原矩形ADCB相似,
∴,即,
∴x2=2y2,
∴x=y,
∴.
故选:B.【点睛】本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.4、B【分析】根据OB的长度即为点C的横坐标,代入反比例函数的解析式中即可求出点C的纵坐标,即BC的长度,再根据矩形的性质即可求出OA.【详解】解:∵∴点C的横坐标为1将点C的横坐标代入中,解得y=2∴BC=2∵四边形AOBC是矩形∴OA=BC=2故选B.【点睛】此题考查的是根据反比例函数解析式求点的坐标和矩形的性质,掌握根据反比例函数解析式求点的坐标和矩形的性质是解决此题的关键.5、C【分析】把各个选项依据比例的基本性质,两内项之积等于两外项之积,已知的比例式可以转化为等积式2x=3y,即可判断.【详解】A.变成等积式是:xy=6,故错误;B.变成等积式是:3x+3y=4y,即3x=y,故错误;C.变成等积式是:2x=3y,故正确;D.变成等积式是:5x+5y=3x,即2x+5y=0,故错误.故选C.【点睛】本题考查了判断两个比例式是否能够互化的方法,即转化为等积式,判断是否相同即可.6、D【分析】根据垂径定理求出AP,连结OA根据勾股定理构造方程可求出OA、OP,再求出PC,最后根据勾股定理即可求出AC.【详解】解:如图,连接OA,∵AB=12,OC⊥AB,OC过圆心O,∴AP=BP=AB=6,∵P为的OC中点,设⊙O的半径为2R,即OA=OC=2R,则PO=PC=R,在Rt△OPA中,由勾股定理得:AO2=OP2+AP2,即:(2R)2=R2+62,解得:R=,即OP=PC=,在Rt△CPA中,由勾股定理得:AC2=AP2+PC2,即AC2=62+解得:AC=故选:D.【点睛】本题考查了垂径定理和勾股定理,能根据垂径定理求出AP的长是解此题的关键.7、D【分析】把x=﹣1代入方程2x2﹣mx﹣3=0得到2+m﹣3=0,然后解关于m的方程即可.【详解】把x=﹣1代入方程2x2﹣mx﹣3=0得2+m﹣3=0,解得m=1.故选D.【点睛】本题考查了一元二次方程的解,熟知能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解决问题的关键.8、B【分析】根据已知条件想办法证明BG=GH=DH,即可解决问题;【详解】解:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,AB=CD,AD=BC,
∵DF=CF,BE=CE,
∴,,
∴,
∴BG=GH=DH,∴S△ABG=S△AGH=S△ADH,∴S平行四边形ABCD=6S△AGH,
∴S△AGH:=1:6,∵E、F分别是边BC、CD的中点,∴,∴,∴,∴=7∶24,故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.9、D【分析】根据选项选出能推出,推出或的即可判断.【详解】解:、∵,,不符合两边对应成比例及夹角相等的相似三角形判定定理.无法判断与相似,即不能推出,故本选项错误;、,,,,即不能推出,故本选项错误;、由可知,不能推出,即不能推出,即不能推出两直线平行,故本选项错误;、∵,,,,,,故本选项正确;故选:.【点睛】本题考查了相似三角形的性质和判定和平行线的判定的应用,主要考查学生的推理和辨析能力,注意:有两组对应边的比相等,且这两边的夹角相等的两三角形相似.10、B【分析】作BD⊥x轴于D,B′E⊥x轴于E,根据位似图形的性质得到B′C=2BC,再利用相似三角形的判定和性质计算即可.【详解】解:作BD⊥x轴于D,B′E⊥x轴于E,则BD∥B′E,由题意得CD=2,B′C=2BC,∵BD∥B′E,∴△BDC∽△B′EC,∴,∴CE=4,则OE=CE−OC=3,∴点B'的横坐标是3,故选:B.【点睛】本题考查的是位似变换、相似三角形的判定和性质,掌握位似变换的概念是解题的关键.11、A【解析】因为∠ACB=90°,AC︰BC=3︰4,则因为∠ACB=∠AED=90°,∠ABC=∠ADE,得△ABC△ADE,得,,则,.故选A.12、A【分析】根据抛物线y=x2+(2m-1)x+m2与坐标轴有一个交点,可知抛物线只与y轴有一个交点,抛物线与x轴没有交点,据此可解.【详解】解:∵抛物线y=x2+(2m-1)x+m2与坐标轴有一个交点,
抛物线开口向上,m2≥0,
∴抛物线与x轴没有交点,与y轴有1个交点,
∴(2m-1)2-4m2<0
解得故选:A.【点睛】本题考查了二次函数与一元二次方程的关系,解决本题的关键是掌握判别式和抛物线与x轴交点的关系.二、填空题(每题4分,共24分)13、1【分析】根据菱形的面积公式即可求解.【详解】∵菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,∴菱形ABCD的面积为AC×BD=×6×8=1,故答案为:1.【点睛】此题主要考查菱形面积的求解,解题的关键是熟知其面积公式.14、公分【分析】根据当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分得出AB=10,进而得出A1C=16,求出OA2=OA=6,过A2作A2D⊥OA1从而得出A2D=3即可.【详解】如图:可得(公分)∵AB=10(公分),∴(公分)过A2作A2D⊥OA1,∵(公分)∴钟面显示点分时,点距桌面的高度为:(公分).故答案为:19公分.【点睛】此题主要考查了解直角三角形以及钟面角,得出∠A2OA1=30°,进而得出A2D=3,是解决问题的关键.15、1【分析】根据一元二次方程根与系数的关系可得出,,再代入中计算即可.【详解】解:∵是方程的两个实数根,∴,,∴,故答案为:1.【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟知:若是一元二次方程的两个根,则,.16、【分析】先通过移项将等号右边多项式移到左边,再利用提公因式法因式分解,即可得出方程的根.【详解】解:移项得:提公因式得:解得:;故答案为:.【点睛】本题考查一元二次方程因式分解的解法.在解一元二次方程的时候,一定要先观察方程的形式,如果遇到了相同的因式,先将他们移到方程等号的一侧,看能否利用提公因式解方程,观察以及积累是快速解题的关键.17、【详解】解:根据无理数的意义可知无理数有:,,因此取到无理数的概率为.故答案为:.考点:概率18、④【分析】利用图象信息一一判断即可解决问题.【详解】解:①由图可知,速度相同的情况下,小红比小兰提前停下来,时间花的短,故小红的运动路程比小兰的短,故本选项不符合题意;
②两人分别在1.09秒和7.49秒的时刻与点C距离相等,故本选项不符合题意;
③当小红运动到点D的时候,小兰也在点D,故本选项不符合题意;
④当小红运动到点O的时候,两人的距离正好等于⊙O的半径,此时t==4.84,故本选项正确;
故答案为:④.【点睛】本题考查动点问题函数图象、解题的关键是读懂图象信息,属于中考常考题型.三、解答题(共78分)19、(1)OE=OF;(2)①,详见解析;②CF=OE-AE【分析】(1)由△AOE≌△COF即可得出结论.
(2)①图2中的结论为:CF=OE+AE,延长EO交CF于点N,只要证明△EOA≌△NOC,△OFN是等边三角形,即可解决问题.
②图3中的结论为:CF=OE-AE,延长EO交FC的延长线于点G,证明方法类似.【详解】解:⑴∵∴AE∥CF∴又,OA=OC∴△AOE≌△COF.∴OE=OF.⑵①延长EO交CF延长线于N.∵∴AE∥CF∴又,OA=OC∴△OAE≌△OCN∴AE=CN,OE=ON又,∴OF=ON=OE,∴OF=FN=ON=OE,又AE=CN∴CF=AE-OE②CF=OE-AE,证明如下:延长EO交FC的延长线于点G∵∴AE∥CF∴∠G=∠AEO,∠OCG=∠EA0,又∵AO=OC,∴△OAE≌△OCG.∴AE=CG,OG=OE.又,∴OF=OG=OE,∴△OGF是等边三角形,∴FG=OF=OE.∴CF=OE-AE.【点睛】本题考查四边形综合题、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.20、⊙O的半径为.【解析】如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。【详解】解:如图,连接OA.交BC于H.∵点A为的中点,∴OA⊥BD,BH=DH=4,∴∠AHC=∠BHO=90°,∵,AC=9,∴AH=3,设⊙O的半径为r,在Rt△BOH中,∵BH2+OH2=OB2,∴42+(r﹣3)2=r2,∴r=,∴⊙O的半径为.【点睛】本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.21、(1);(2)证明见解析.【解析】试题分析:一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.(1)直接把x=1代入方程x2+mx+m﹣2=0求出m的值;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.解:(1)根据题意,将x=1代入方程x2+mx+m﹣2=0,得:1+m+m﹣2=0,解得:m=;(2)∵△=m2﹣4×1×(m﹣2)=m2﹣4m+8=(m﹣2)2+4>0,∴不论m取何实数,该方程都有两个不相等的实数根.考点:根的判别式;一元二次方程的解.22、(1);(2)【分析】(1)分别根据二次根式的性质、0指数幂的意义和负整数指数幂的运算法则计算各项,再合并即可;(2)根据分式的乘方和分式的乘除混合运算法则解答即可.【详解】解:(1)原式==;(2)原式.【点睛】本题考查了二次根式的性质、0指数幂、负整数指数幂以及分式的乘方和分式的乘除混合运算等知识,属于基础题目,熟练掌握上述知识是解题的关键.23、(1)65-x,130-2x,130-2x;(2)每件乙产品可获得的利润是元.【分析】(1)根据题意即可列出代数式;(2)根据题意列出方程即可求解.【详解】解:由己知,每天安排人生产乙产品时,生产甲产品的有人,共生产甲产品件.在乙每件元获利的基础上,增加人,利润减少元每件,则乙产品的每件利润为.故答案为:由题意解得(不合题意,舍去)(元)答:每件乙产品可获得的利润是元【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系列方程.24、(1)A(-4,3),C(-2,5),B(3,0);(2)点A′的坐标为:(-4,-3),B′的坐标为:(-3,0),点C′的坐标为:(2,-5);(3)5..【分析】(1)直接利用坐标系得出各点坐标即可;
(2)利用关于坐标轴对称点的性质分别得出答案;
(3)直接利用勾股定理得出答案.【详解】(1)A(-4,3),C(-2,5),B(3,0);(2)如图所示:点A′的坐标为:(-4,-3),B′的坐标为:(-3,0),点C′的坐标为:(2,-5);
(3)线段BC的长为:=5.【点睛】此题主要考查关于坐标轴对称点的性质,勾股定理,正确得出对应点位置是解题关键.25、(1);(2);(3)【分析】(1)由BC是直径证得∠OCD=∠BDO,从而得到△BOD∽△DOC,根据线段成比例求出OD的长,设抛物线解析式为y=a(x+2)(x-8),将点D坐标代入即可得到解析式;(2)利用角平分线求出,得到,从而得出点F的坐标(3,5),再延长延长CD至点,可使,得到(-8,8),求出F的解析式,与直线BD的交点坐标即为点P,此时△PFC的周长最小;(3)先假设存在,①利用弧等圆周角相等把点D、F绕点A顺时针旋转90,使点F与点B重合,点G与点Q重合,则Q1(7,3),符合,求出直线FQ1的解析式,与抛物线的交点即为点G1,②根据对称性得到点Q2的坐标,再求出直线FQ2的解析式,与抛物线的交点即为点G2,由此证得存在点G.【详解】(1)∵以线段BC为直径作⊙A,交y轴的正半轴于点D,∴∠BDO+∠ODC=90,∵∠OCD+∠ODC=90,∴∠OCD=∠BDO,∵∠DOC=∠DOB=90,∴△BOD∽△DOC,∴,∵B(-2,0),C(8,0),∴,解得OD=4(负值舍去),∴D(0,4)设抛物线解析式为y=a(x+2)(x-8),∴4=a(0+2)(0-8),解得a=,∴二次函数的解析式为y=(x+2)(x-8),即.(2)∵BC为⊙A的直径,且B(-2,0),C(8,0),∴OA=3,A(3,0),∴点E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 脑垂体功能异常伴发的精神障碍的健康宣教
- 小儿尼曼-皮克病的健康宣教
- 学校安全管理培训
- 202A企业劳动合同标准版
- 糖尿病心肌病的健康宣教
- 2025官方房屋出租租赁合同范本
- 计算机网络考研题库单选题100道及答案
- 2025金融机构最高额担保个人借款合同
- 北京燃油车报废标准
- 2025年资阳经营性道路客货运输驾驶员从业资格考试
- 2020湖南对口升学英语真题(附答案)
- GB/T 26278-2010轮胎规格替换指南
- GB 16246-1996车间空气中硫酸二甲酯卫生标准
- 幽门螺杆菌检测-课件
- 儿童抑郁量表CDI
- 心电监护操作评分标准
- GB∕T 37244-2018 质子交换膜燃料电池汽车用燃料 氢气
- JJG 700 -2016气相色谱仪检定规程-(高清现行)
- API SPEC 5DP-2020钻杆规范
- (完整版)有机太阳能电池课件2
- 电梯使用单位电梯使用和运行安全管理制度
评论
0/150
提交评论