版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列函数关系式中,是的反比例函数的是()A. B. C. D.2.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则sin∠BDE的值是()A. B. C. D.3.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价为元,则可列方程为()A. B.C. D.4.某正多边形的一个外角的度数为60°,则这个正多边形的边数为()A.6 B.8 C.10 D.125.已知,则下列结论一定正确的是()A. B. C. D.6.一元二次方程x2-8x-1=0配方后为()A.(x-4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x-4)2=17或(x+4)2=177.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为()A. B. C. D.8.不等式的解集在数轴上表示正确的是()A. B.C. D.9.在平面直角坐标系中,以原点O为位似中心,把△ABC放大得到△A1B1C1,使它们的相似比为1:2,若点A的坐标为(2,2),则它的对应点A1的坐标一定是()A.(﹣2,﹣2) B.(1,1)C.(4,4) D.(4,4)或(﹣4,﹣4)10.在△ABC中,D是AB中点,E是AC中点,若△ADE的面积是3,则△ABC的面积是()A.3 B.6 C.9 D.1211.在-2,-1,0,1这四个数中,最小的数是()A.-2 B.-1 C.0 D.112.如图,菱形的边长是4厘米,,动点以1厘米/秒的速度自点出发沿方向运动,动点以2厘米/秒的速度自点出发沿方向运动至点停止,同时点也停止运动若点,同时出发运动了秒,记的面积为厘米2,下面图象中能表示与之间的函数关系的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,为外一点,切于点,若,,则的半径是______.14.若关于x的一元二次方程x2+mx+m2﹣19=0的一个根是﹣3,则m的值是_____.15.如果方程x2+4x+n=0可以配方成(x+m)2=3,那么(n﹣m)2020=_____.16.如图,面积为6的矩形的顶点在反比例函数的图像上,则__________.17.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计发现共抛掷次啤酒瓶盖,凸面向上的次数为次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为_______________________(结果精确到)18.已知点P1(a,3)与P2(-4,b)关于原点对称,则ab=_____.三、解答题(共78分)19.(8分)某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?20.(8分)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C,已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD①当△OPC为等腰三角形时,求点P的坐标;②求△BOD面积的最大值,并写出此时点D的坐标.21.(8分)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.22.(10分)定义:点P在△ABC的边上,且与△ABC的顶点不重合.若满足△PAB、△PBC、△PAC至少有一个三角形与△ABC相似(但不全等),则称点P为△ABC的自相似点.如图①,已知点A、B、C的坐标分别为(1,0)、(3,0)、(0,1).(1)若点P的坐标为(2,0),求证点P是△ABC的自相似点;(2)求除点(2,0)外△ABC所有自相似点的坐标;(3)如图②,过点B作DB⊥BC交直线AC于点D,在直线AC上是否存在点G,使△GBD与△GBC有公共的自相似点?若存在,请举例说明;若不存在,请说明理由.23.(10分)如图,在平面直角坐标系中,已知正比例函数的图象与反比例函数的图象交于,两点.(1)反比例函数的解析式为____________,点的坐标为___________;(2)观察图像,直接写出的解集;(3)是第一象限内反比例函数的图象上一点,过点作轴的平行线,交直线于点,连接,若的面积为3,求点的坐标.24.(10分)如图1,抛物线y=ax2+bx+c的顶点(0,5),且过点(﹣3,),先求抛物线的解析式,再解决下列问题:(应用)问题1,如图2,线段AB=d(定值),将其弯折成互相垂直的两段AC、CB后,设A、B两点的距离为x,由A、B、C三点组成图形面积为S,且S与x的函数关系如图所示(抛物线y=ax2+bx+c上MN之间的部分,M在x轴上):(1)填空:线段AB的长度d=;弯折后A、B两点的距离x的取值范围是;若S=3,则是否存在点C,将AB分成两段(填“能”或“不能”);若面积S=1.5时,点C将线段AB分成两段的长分别是;(2)填空:在如图1中,以原点O为圆心,A、B两点的距离x为半径的⊙O;画出点C分AB所得两段AC与CB的函数图象(线段);设圆心O到该函数图象的距离为h,则h=,该函数图象与⊙O的位置关系是.(提升)问题2,一个直角三角形斜边长为c(定值),设其面积为S,周长为x,证明S是x的二次函数,求该函数关系式,并求x的取值范围和相应S的取值范围.25.(12分)已知,如图,点E在平行四边形ABCD的边CD上,且,设,.(1)用、表示;(直接写出答案)(2)设,在答题卷中所给的图上画出的结果.26.计算:(1)(2)
参考答案一、选择题(每题4分,共48分)1、C【分析】根据反比例函数的定义即可得出答案.【详解】A为正比例函数,B为一次函数,C为反比例函数,D为二次函数,故答案选择C.【点睛】本题考查的是反比例函数的定义:形如的式子,其中k≠0.2、C【分析】由矩形的性质可得AB=CD,AD=BC,AD∥BC,可得BE=CE=BC=AD,由全等三角形的性质可得AE=DE,由相似三角形的性质可得AF=2EF,由勾股定理可求DF的长,即可求sin∠BDE的值.【详解】∵四边形ABCD是矩形∴AB=CD,AD=BC,AD∥BC∵点E是边BC的中点,∴BE=CE=BC=AD,∵AB=CD,BE=CE,∠ABC=∠DCB=90°∴△ABE≌△DCE(SAS)∴AE=DE∵AD∥BC∴△ADF∽△EBF∴=2∴AF=2EF,∴AE=3EF=DE,∴sin∠BDE=,故选C.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解直角三角形的运用,熟练运用相似三角形的判定和性质是本题的关键.3、A【分析】设这种台灯上涨了x元,台灯将少售出10x,根据“利润=(售价-成本)×销量”列方程即可.【详解】解:设这种台灯上涨了x元,则根据题意得,
(40+x-30)(600-10x)=10000.故选:A.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.4、A【分析】根据外角和计算边数即可.【详解】∵正多边形的外角和是360,∴,故选:A.【点睛】此题考查正多边形的性质,正多边形的外角和,熟记正多边形的特点即可正确解答.5、D【分析】应用比例的基本性质,将各项进行变形,并注意分式的性质y≠0,这个条件.【详解】A.由,则x与y的比例是2:3,只是其中一特殊值,故此项错误;B.由,可化为,且y≠0,故此项错误;C.,化简为,由B项知故此项错误;D.,可化为,故此项正确;故答案选D【点睛】此题主要考查了比例的基本性质,正确运用已知变形是解题关键.6、A【解析】x2-8x-1=0,移项,得x2-8x=1,配方,得x2-8x+42=1+42,即(x-4)2=17.故选A.点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.7、B【分析】让白球的个数除以球的总数即为摸到白球的概率.【详解】解:6个黑球3个白球一共有9个球,所以摸到白球的概率是.故选:B.【点睛】本题考查了概率,熟练掌握概率公式是解题的关键.8、B【解析】先求出不等式的解集,再在数轴上表示出来即可.【详解】解:,移项得:,合并同类项得:,系数化为1得,,在数轴上表示为:故选:B.【点睛】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9、D【解析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k进行解答.【详解】∵以原点O为位似中心,相似比为:1:2,把△ABC放大得到△A1B1C1,点A的坐标为(2,2),则它的对应点A1的坐标一定为:(4,4)或(-4,-4),
故选D.【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.10、D【分析】根据相似三角形的性质与判定即可求出答案.【详解】解:∵D是AB中点,E是AC中点,∴DE是△ABC的中位线,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∴S△ABC=4S△ADE=12,故选:D.【点睛】本题考查了相似三角形的面积问题,掌握相似三角形的性质与判定是解题的关键.11、A【解析】根据正数大于0,负数小于0,负数绝对值越大值越小即可求解.【详解】解:在、、、这四个数中,大小顺序为:,所以最小的数是.故选A.【点睛】此题考查了有理数的大小的比较,解题的关键利用正负数的性质及数轴可以解决问题.12、D【分析】用含t的代数式表示出BP,BQ的长,根据三角形的面积公式就可以求出S,从而得到函数的解析式,进一步即可求解.【详解】解:由题意得BP=4-t,BQ=2t,∴S=×2t××(4-t)=-t2+2t,∴当x=2时,S=-×4+2×2=2.∴选项D的图形符合.故选:D.【点睛】本题主要考查了动点问题的函数图象,利用图形的关系求函数的解析式,注意数形结合是解决本题的关键.二、填空题(每题4分,共24分)13、1【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APO=45°,∴OA=PA=1,故答案为:1.【点睛】本题考查切线的性质即圆的切线垂直于经过切点的半径.若出现圆的切线,连接过切点的半径,构造定理图,得出垂直关系.14、-2或1.【解析】将x=-3代入原方程,得9-3m+m2-19=0,m2-3m-10=0,(m-1)(m+2)=0,m=-2或1.故答案为-2或1.点睛:已知方程的一个实数根,要求方程中的未知参数,把根代入方程即可.15、1【分析】已知配方方程转化成一般方程后求出m、n的值,即可得到结果.【详解】解:由(x+m)2=3,得:
x2+2mx+m2-3=0,
∴2m=4,m2-3=n,
∴m=2,n=1,
∴(n﹣m)2020=(1﹣2)2020=1,
故答案为:1.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.16、-1【分析】根据反比例函数系数k的几何意义可得|k|=1,再根据函数所在的象限确定k的值.【详解】解:∵反比例函数的图象经过面积为1的矩形OABC的顶点B,
∴|k|=1,k=±1,
∵反比例函数的图象经过第二象限,
∴k=-1.
故答案为:-1.【点睛】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|.17、【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【详解】∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为10次,∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为=0.1,故答案为:0.1.【点睛】本题主要考查概率的意义、等可能事件的概率,大量重复试验事件发生的频率约等于概率.18、﹣1【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)可得到a,b的值,再代入ab中可得到答案.【详解】解:∵P(a,3)与P′(-4,b)关于原点的对称,
∴a=4,b=-3,
∴ab=4×(-3)=-1,
故答案为:-1.【点睛】此题主要考查了坐标系中的点关于原点对称的坐标特点.注意:关于原点对称的点,横纵坐标分别互为相反数.三、解答题(共78分)19、(1)20%;(2)每千克应涨价5元.【分析】(1)设每次下降的百分率为x,根据相等关系列出方程,可求每次下降的百分率;(2)设涨价y元(0<y≤8),根据总盈余=每千克盈余×数量,可列方程,可求解.【详解】解:(1)设每次下降的百分率为x根据题意得:50(1﹣x)2=32解得:x1=0.2,x2=1.8(不合题意舍去)答:每次下降20%(2)设涨价y元(0<y≤8)6000=(10+y)(500﹣20y)解得:y1=5,y2=10(不合题意舍去)答:每千克应涨价5元.【点睛】此题主要考查了一元二次方程应用,关键是根据题意找到蕴含的相等关系,列出方程,解答即可.20、(1)抛物线的解析式为;(2)①P点坐标为P1()或P2()或P2();②D().【分析】(1)首先解方程得出A,B两点的坐标,从而利用待定系数法求出二次函数解析式即可.(2)①首先求出AB的直线解析式,以及BO解析式,再利用等腰三角形的性质得出当OC=OP时,当OP=PC时,点P在线段OC的中垂线上,当OC=PC时分别求出x的值即可.②利用S△BOD=S△ODQ+S△BDQ得出关于x的二次函数,从而得出最值即可.【详解】解:(1)解方程x2﹣2x﹣2=0,得x1=2,x2=﹣1.∵m<n,∴m=﹣1,n=2.∴A(﹣1,﹣1),B(2,﹣2).∵抛物线过原点,设抛物线的解析式为y=ax2+bx.∴,解得:.∴抛物线的解析式为.(2)①设直线AB的解析式为y=kx+b.∴,解得:.∴直线AB的解析式为.∴C点坐标为(0,).∵直线OB过点O(0,0),B(2,﹣2),∴直线OB的解析式为y=﹣x.∵△OPC为等腰三角形,∴OC=OP或OP=PC或OC=PC.设P(x,﹣x).(i)当OC=OP时,,解得(舍去).∴P1().(ii)当OP=PC时,点P在线段OC的中垂线上,∴P2().(iii)当OC=PC时,由,解得(舍去).∴P2().综上所述,P点坐标为P1()或P2()或P2().②过点D作DG⊥x轴,垂足为G,交OB于Q,过B作BH⊥x轴,垂足为H.设Q(x,﹣x),D(x,).S△BOD=S△ODQ+S△BDQ=DQ•OG+DQ•GH=DQ(OG+GH)==.∵0<x<2,∴当时,S取得最大值为,此时D().【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解一元二次方程、图形的面积计算等,其中(2)要注意分类求解,避免遗漏.21、(1)见解析;(2)EM=【分析】(1)通过证明四边形AHGD是平行四边形,可得AH=DG,AD=HG=CD,由“SAS”可证△DCG≌△HGF,可得DG=HF,∠HFG=∠HGD,可证AH⊥HF,AH=HF,即可得结论;
(2)由题意可得DE=2,由平行线分线段成比例可得,即可求EM的长.【详解】证明:(1)∵四边形ABCD,四边形ECGF都是正方形∴DA∥BC,AD=CD,FG=CG,∠B=∠CGF=90°∵AD∥BC,AH∥DG,∴四边形AHGD是平行四边形∴AH=DG,AD=HG=CD,∵CD=HG,∠ECG=∠CGF=90°,FG=CG,∴△DCG≌△HGF(SAS),∴DG=HF,∠HFG=∠HGD∴AH=HF,∵∠HGD+∠DGF=90°,∴∠HFG+∠DGF=90°∴DG⊥HF,且AH∥DG,∴AH⊥HF,且AH=HF∴△AHF为等腰直角三角形.(2)∵AB=3,EC=1,∴AD=CD=3,DE=2,EF=1.∵AD∥EF,∴,且DE=2.∴EM=.【点睛】本题考查了正方形的性质,平行四边形的判定和性质,全等三角形的判定和性质,平行线分线段成比例等知识点,综合性较强难度大灵活运用这些知识进行推理是本题的关键.22、(1)见解析;(2)△CPA∽△CAB,此时P(,);△BPA∽△BAC,此时P(,);(3)S(3,-2)是△GBD与△GBC公共的自相似点,见解析【分析】(1)利用:两边对应成比例且夹角相等,证明△APC∽△CAB即可;(2)分类讨论:△CPA∽△CAB和△BPA∽△BAC,分别求得P点的坐标;(3)先求得点D的坐标,说明点G(5,)、S(3,-2)在直线AC:上,证得△ABC△SGB,再证得△GBS∽△GCB,说明点S是△GBC的自相似点;又证得△DBG△DSB,说明点S是△GBD的自相似点.从而说明S(3,-2)是△GBD与△GBC公共的自相似点.【详解】(1)如图,∵A(1,0),B(3,0),C(0,1),P(2,0),∴AP=2-1=1,AC=,AB=3-1=2,∴,,∴=,∵∠PAC=∠CAB,∴△APC∽△CAB,故点P是△ABC的自相似点;(2)点P只能在BC上,①△CPA∽△CAB,如图,由(1)得:AC,AB,又,∵△CPA∽△CAB,∴,∴,∴,过点P作PD∥y轴交轴于D,∴,,∴,,∴,,P点的坐标为(,)②△BPA∽△BAC,如图,由前面获得的数据:AB,,∵△BPA∽△BAC,∴,∴,∴,过点P作PE∥y轴交轴于E,∴,∴,∴,,∴,P点的坐标为(,);(3)存在.当点G的坐标为(5,)时,△GBD与△GBC公共的自相似点为S(3,).理由如下:如图:设直线AC的解析式为:,
∴,解得:,∴直线AC的解析式为:,过点D作DE⊥x轴于点E,
∵∠CBO+∠DBE=90,∠EDB+∠DBE=90,∴∠CBO=∠EDB,∴,∴,设BE=a,则DE=3a,∴OE=3-a,∴点D的坐标为(3-a,-3a),∵点D在直线AC上,∴,解得:,∴点D的坐标为(,);如下图:当点G的坐标为(5,)时,△GBD与△GBC公共的自相似点为S(3,).直线AC的解析式为:,
∵,,∴点G、点S在直线AC上,过点G作GH⊥x轴于点H,∵,∴,由S(3,)、B(3,0)知BS⊥x轴,∴△AED、△ABS、△AHG为等腰直角三角形,∵D(,),S,G(,∴,,B,,,,,,,,在△ABC和△SGB中∵,,∴,∵∴∴△ABC△SGB∴∠SBG=∠BCA,又∠SGB=∠BGC,∴△GBS∽△GCB,∴点S是△GBC的自相似点;在△DBG和△DSB中,∵,,∴,且,∴△DBG△DSB;∴点S是△GBD的自相似点.∴S(3,)是△GBD与△GBC公共的自相似点.【点睛】本题主要考查了相似三角形的判定,涉及的知识有:平面内点的特征、待定系数法求直线的解析式、等腰直角三角形的判定和性质、勾股定理,读懂题意,理清“自相似点”的概念是解题的关键.23、(1)y=;(4,2);(2)x<-4或0<x<4;(3)P(2,)或P(2,4).【分析】(1)把A(a,-2)代入y=x,可得A(-4,-2),把A(-4,-2)代入y=,可得反比例函数的表达式为y=,再根据点B与点A关于原点对称,即可得到B的坐标;
(2)观察函数图象,由交点坐标即可求解;
(3)设P(m,),则C(m,m),根据△POC的面积为3,可得方程m×|m-|=3,求得m的值,即可得到点P的坐标.【详解】(1)把A(a,-2)代入y=x
可得a=-4,
∴A(-4,-2),
把A(-4,-2)代入y=,可得k=8,
∴反比例函数的表达式为y=,
∵点B与点A关于原点对称,
∴B(4,2).
故答案为:y=;(4,2);
(2)x-<0的解集是x<-4或0<x<4;
(3)设P(m,),则C(m,m),
依题意,得m•|m-|=3,
解得m=2或m=2,(负值已舍去).
∴P(2,)或P(2,4).【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于掌握反比例函数与一次函数的图象的交点坐标满足两函数的解析式.24、抛物线的解析式为:y=﹣x2+5;(2)20<x<2,不能,+和﹣;(2),相离或相切或相交;(3)相应S的取值范围为S>c2.【分析】将顶点(0,5)及点(﹣3,)代入抛物线的顶点式即可求出其解析式;(2)由抛物线的解析式先求出点M的坐标,由二次函数的图象及性质即可判断d的值,可由d的值判断出x的取值范围,分别将S=3和2.5代入抛物线解析式,即可求出点C将线段AB分成两段的长;(2)设AC=y,CB=x,可直接写出点C分AB所得两段AC与CB的函数解析式,并画出图象,证△OPM为等腰直角三角形,过点O作OH⊥PM于点H,则OH=PM=,分情况可讨论出AC与CB的函数图象(线段PM)与⊙O的位置关系;(3)设直角三角形的两直角边长分别为a,b,由勾股定理及完全平公式可以证明S是x的二次函数,并可写出x的取值范围及相应S的取值范围.【详解】解:∵抛物线y=ax2+bx+c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 优惠合同协议的意义
- 全新电脑购销意向
- 教官发展服务合同
- 公路工程招标文件的标准范本
- 育肥猪购销协议
- 有机纱线购销合同
- 招标文件范本摇号定标的合同条款
- 童装采购合同
- 代理招商合作合同定制
- 个人工作保安全
- 曳引驱动乘客电梯安全风险评价内容与要求
- 护理疑难病例讨论肺心病
- 耳硬化症护理查房
- 浙江省义乌市六校联考2024届八年级物理第二学期期末学业质量监测试题含解析
- 北京市昌平区2023-2024学年七年级上学期期末生物试卷
- 消防员心理培训课件
- 【一例小儿支气管肺炎的临床护理个案分析2200字】
- 项目管理机构及服务方案
- 蔬菜水果供货服务方案
- 2023年高级电气工程师年终总结及年后展望
- “源网荷储”一体化项目(储能+光伏+风电)规划报告
评论
0/150
提交评论