版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在△中,,,垂足为,若,,则的值为()A. B.C. D.2.如图,在△ABC中,AB=6,AC=8,BC=9,将△ABC沿图中的线段剪开,剪下的阴影三角形与原三角形不相似的是()A. B.C. D.3.如图,已知为的直径,点,在上,若,则()A. B. C. D.4.关于反比例函数图象,下列说法正确的是()A.必经过点 B.两个分支分布在第一、三象限C.两个分支关于轴成轴对称 D.两个分支关于原点成中心对称5.下列成语描述的事件为随机事件的是()A.守株待兔 B.水中捞月 C.瓮中捉鳖 D.水涨船高6.如图,在Rt△ABC中,∠ACB=900,CD⊥AB于点D,BC=3,AC=4,tan∠BCD的值为()A.; B.; C.; D.;7.如果零上2℃记作+2℃,那么零下3℃记作()A.-3℃ B.-2℃ C.+3℃ D.+2℃8.下列方程是一元二次方程的是()A. B. C. D.9.如图,在⊙O中,是直径,是弦,于,连接,∠,则下列说法正确的个数是()①;②;③;④A.1 B.2 C.3 D.410.如图,抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论:①;②;③方程的两个根是,;④当时,的取值范围是;⑤当时,随增大而增大其中结论正确的个数是A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.一元二次方程x2﹣2x=0的解是.12.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为___________.13.抛物线的对称轴为直线______.14.如图,从一块直径是的圆形铁皮上剪出一个圆心角是的扇形,如果将剪下来的扇形围成一个圆锥,那么圆锥的底面圆的半径为___________.15.如图,是的直径,点在上,且,垂足为,,,则__________.16.河堤横截面如图所示,堤高为4米,迎水坡的坡比为1:(坡比=),那么的长度为____________米.17.一个质地均匀的小正方体,六个面分别标有数字1,1,2,4,5,5,随机掷一次小正方体,朝上一面的数字是奇数的概率是__________.18.如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC=__.三、解答题(共66分)19.(10分)解方程:(1)x2﹣4x+2=0;(2)20.(6分)如图,小明欲利用测角仪测量树的高度.已知他离树的水平距离BC为10m,测角仪的高度CD为1.5m,测得树顶A的仰角为33°.求树的高度AB.(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)21.(6分)在一次徒步活动中,有甲、乙两支徒步队伍.队伍甲由A地步行到B地后按原路返回,队伍乙由A地步行经B地继续前行到C地后按原路返回,甲、乙两支队伍同时出发.设步行时间为x(分钟),甲、乙两支队伍距B地的距离为y1(千米)和y2(千米).(甲、乙两队始终保持匀速运动)图中的折线分别表示y1、y2与x之间的函数关系,请你结合所给的信息回答下列问题:(1)A、B两地之间的距离为千米,B、C两地之间的距离为千米;(2)求队伍乙由A地出发首次到达B地所用的时间,并确定线段MN表示的y2与x的函数关系式;(3)请你直接写出点P的实际意义.22.(8分)如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少mm.23.(8分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中的值和“E”组对应的圆心角度数;(3)请估计该校2000名学生中每周的课外阅读时间不小于6小时的人数.24.(8分)计算:()-1-cos45°-(2020+π)0+3tan30°25.(10分)如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函数的解析式;(2)请直接写出满足kx+b>的x的取值范围;(3)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.26.(10分)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C,已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD①当△OPC为等腰三角形时,求点P的坐标;②求△BOD面积的最大值,并写出此时点D的坐标.
参考答案一、选择题(每小题3分,共30分)1、D【分析】在△中,根据勾股定理可得,而∠B=∠ACD,即可把求转化为求.【详解】在△中,根据勾股定理可得:∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD,∴=.故选D.【点睛】本题考查了了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.2、B【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A、根据两边成比例,夹角相等,故两三角形相似,故本选项错误;B、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D、根据两边成比例,夹角相等,故两三角形相似,故本选项错误;故选:B.【点睛】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.3、C【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD的度数,再根据直径所对的圆周角是90°,利用内角和求解.【详解】解:连接AD,则∠BAD=∠BCD=28°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C.【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.4、D【分析】把(2,1)代入即可判断A,根据反比例函数的性质即可判断B、C、D.【详解】A.当x=2时,y=-1≠1,故不正确;B.∵-2<0,∴两个分支分布在第二、四象限,故不正确;C.两个分支不关于轴成轴对称,关于原点成中心对称,故不正确;D.两个分支关于原点成中心对称,正确;故选D.【点睛】本题考查了反比例函数的图象与性质,反比例函数(k是常数,k≠0)的图象是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限;当k<0,反比例函数图象的两个分支在第二、四象限.反比例函数图象的两个分支关于原点成中心对称.5、A【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.守株待兔是随机事件,故A符合题意;B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、A【分析】根据余角的性质,可得∠BCD=∠A,根据等角的正切相等,可得答案.【详解】由∠ACB=90°,CD⊥AB于D,得
∠BCD=∠A
tan∠BCD=tan∠A=,
故选A.【点睛】此题考查锐角三角函数的定义,利用余角的性质得出∠BCD=∠A是解题关键.7、A【分析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.故选A.8、B【分析】一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.【详解】解:选项:是一元一次方程,故不符合题意;选项:只含一个未知数,并且未知数最高次项是2次,是一元二次方程,故符合题意;选项:有两个未知数,不是一元二次方程,故不符合题意;选项:不是整式方程,故不符合题意;综上,只有B正确.故选:B.【点睛】本题考查了一元二次方程的定义,属于基础知识的考查,比较简单.9、C【分析】先根据垂径定理得到,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断.【详解】∵AB⊥CD,∴,CE=DE,②正确,∴∠BOC=2∠BAD=40°,③正确,∴∠OCE=90°−40°=50°,④正确;又,故①错误;故选:C.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.10、C【分析】利用抛物线与轴的交点个数可对①进行判断;由对称轴方程得到,然后根据时函数值为0可得到,则可对②进行判断;利用抛物线的对称性得到抛物线与轴的一个交点坐标为,则可对③进行判断;根据抛物线在轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.【详解】解:抛物线与轴有2个交点,,所以①正确;,即,而时,,即,,所以②错误;抛物线的对称轴为直线,而点关于直线的对称点的坐标为,方程的两个根是,,所以③正确;根据对称性,由图象知,当时,,所以④错误;抛物线的对称轴为直线,当时,随增大而增大,所以⑤正确.故选:.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数,二次项系数决定抛物线的开口方向和大小:当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时(即,对称轴在轴左;当与异号时(即,对称轴在轴右;常数项决定抛物线与轴交点位置:抛物线与轴交于;抛物线与轴交点个数由△决定:△时,抛物线与轴有2个交点;△时,抛物线与轴有1个交点;△时,抛物线与轴没有交点.二、填空题(每小题3分,共24分)11、【分析】方程整理后,利用因式分解法求出解即可.【详解】方程整理得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故答案为x1=0,x1=1.12、.【解析】⊙O是△ABC的外接圆,∠BAC=60°,;因为OB、OC是⊙O的半径,所以OB=OC,所以=,在中,若⊙O的半径OC为2,OB=OC=2,在中,BC="2"=【点睛】本题考查圆周角与圆心角、弦心距,要求考生熟悉圆周角与圆心角的关系,会求弦心距和弦长13、【分析】将题目中的函数解析式化为顶点式,即可写出该抛物线的对称轴.【详解】∵抛物线y=x2+8x+2=(x+1)2﹣11,∴该抛物线的对称轴是直线x=﹣1.故答案为:x=﹣1.【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.14、【分析】根据题意可知扇形ABC围成圆锥后的底面周长就是弧BC的弧长,再根据弧长公式和圆周长公式来求解.【详解】解:作于点,连结OA、BC,∵∠BAC=90°∴BC是直径,OB=OC,,圆锥的底面圆的半径故答案为:【点睛】本题考查了扇形围成圆锥形,圆锥的底面圆的周长就是原来扇形的弧长,找到它们的关系是解题的关键.15、2【分析】先连接OC,在Rt△ODC中,根据勾股定理得出OC的长,即可求得答案.【详解】连接OC,如图,
∵CD=4,OD=3,,
在Rt△ODC中,
∴,∵,∴.故答案为:.【点睛】此题考查了圆的认识,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16、8【分析】在Rt△ABC中,根据坡面AB的坡比以及BC的值,求出AC的值,再通过解直角三角形即可求出斜面AB的长.【详解】∵Rt△ABC中,BC=6米,迎水坡AB的坡比为1:,∴BC:AC=1:,∴AC=•BC=4(米),∴(米)【点睛】本题考查了解直角三角形的应用----坡度坡角问题,熟练运用勾股定理是解答本题的关键.17、【分析】直接利用概率求法进而得出答案.【详解】∵一个质地均匀的小正方体,六个面分别标有数字1,1,2,4,5,5,∴随机掷一次小正方体,朝上一面的数字是奇数的概率是:.故答案为:.【点睛】此题主要考查了概率公式,正确掌握概率公式是解题关键.18、30°【分析】根据AB是⊙O的直径可得出∠ACB=90°,再根据三角形内角和为180°以及∠OBC=60°,即可求出∠BAC的度数.【详解】∵AB是⊙O的直径,
∴∠ACB=90°,
又∵∠OBC=60°,
∴∠BAC=180°-∠ACB-∠ABC=30°.
故答案为:30°.【点睛】本题考查了圆周角定理以及角的计算,解题的关键是找出∠ACB=90°.本题属于基础题,难度不大,解决该题型题目时,找出直径所对的圆周角为90°是关键.三、解答题(共66分)19、(1);(1)x1=﹣3,x1=1.【分析】(1)用配方法即可得出结论;(1)整理后用因式分解法即可得到结论.【详解】(1)∵x1﹣4x+1=0,∴x1﹣4x+4=1,∴(x﹣1)1=1,∴;(1)∵(x﹣1)(x+1)=4,∴x1+x﹣6=0,∴(x+3)(x﹣1)=0,∴x1=﹣3,x1=1.【点睛】本题考查了一元二次方程,解答本题的关键是熟练运用一元二次方程的解法,本题属于基础题型.20、8米【详解】解:如图,过点D作DE⊥AB,垂足为E.在Rt△ADE中,DE=BC=10,∠ADE=33°,tan∠ADE=,∴AE=DE·tan∠ADE≈10×0.65=6.5,∴AB=AE+BE=AE+CD=6.5+1.5=8(m).答:树的高度AB约为8m.21、(1)2;1;(2)线段MN表示的y2与x的函数解析式为y2=x﹣2(20≤x≤60);(3)点P的意义为:当x=分钟时,甲乙距B地都为千米.【分析】(1)当x=0时,y的值即为A、B两地间的距离,观察队伍乙的运动图象可知线段MN段为队伍乙从B地到C地段的函数图象,由此可得出B、C两地间的距离;(2)根据队伍乙的运动为匀速运动可根据路程比等于时间比来求出点M的坐标,设直线MN的解析式为y=kx+b(k≠0),再由M、N点的坐标利用待定系数法求出线段MN的解析式;(3)设队伍甲从A地到B地运动过程中离B地距离y与运动时间x之间的函数解析式为y=mx+n(m≠0),由点(0,2)、(60,0)利用待定系数法即可求出m、n的值,再令x﹣2=﹣x+2,求出交点P的坐标,结合坐标系中点的坐标意义即可解决问题.【详解】解:(1)当x=0时,y=2,∴A、B两地之间的距离为2千米;观察队伍乙的运动图象可知,B、C两地之间的距离为1千米.故答案为2;1.(2)乙队伍60分钟走6千米,走2千米用时60÷6×2=20分钟,∴M(20,0),N(60,1),设直线MN的解析式为y=kx+b(k≠0),则有,解得:.∴线段MN表示的y2与x的函数解析式为y2=x﹣2(20≤x≤60).(3)设队伍甲从A地到B地运动过程中离B地距离y与运动时间x之间的函数解析式为y=mx+n(m≠0),则点(0,2)、(60,0)在该函数图象上,∴有,解得:.∴当0≤x≤60时,队伍甲的运动函数解析式为y=﹣x+2.令x﹣2=﹣x+2,解得:x=,将x=代入到y=﹣x+2中得:y=.∴点P的意义为:当x=分钟时,甲乙距B地都为千米.考点:一次函数的应用.22、48mm【分析】设正方形的边长为x,表示出AI的长度,然后根据相似三角形对应高的比等于相似比列出比例式,然后进行计算即可得解.【详解】设正方形的边长为xmm,则AI=AD﹣x=80﹣x,∵EFHG是正方形,∴EF∥GH,∴△AEF∽△ABC,∴,即,解得x=48mm,∴这个正方形零件的边长是48mm.【点睛】本题主要考查了相似三角形判定与性质的综合运用,熟练掌握相关概念是解题关键.23、(1)补全频数分布直方图,见解析;(2)“E”组对应的圆心角度数为14.4°;(3)该校2000名学生中每周的课外阅读时间不小于6小时的人数为580人.【分析】(1)根据第二组频数为21,所占百分比为21%,求出数据总数,再用数据总数减去其余各组频数得到第四组频数,进而补全频数分布直方图;
(2)用第三组频数除以数据总数,再乘以100,得到m的值;先求出“E”组所占百分比,再乘以360°即可求出对应的圆心角度数;
(3)用2000乘以每周课外阅读时间不小于6小时的学生所占百分比即可.【详解】解:(1)数据总数为:21÷21%=100,
第四组频数为:100-10-21-40-4=25,
频数分布直方图补充如下:(2)m=40÷100×100=40;“E”组对应的圆心角度数为;(3)该校2000名学生中每周的课外阅读时间不小于6小时的人数为(人).【点睛】此题主要考查了频数分布直方图、扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体.24、.【分析】根据负指数次幂的性质、45°的余弦值、任何非0数的0次幂都等于1和30°的正切值计算即可.【详解】解:()-1-cos45°-(2020+π)0+3tan30°=2--1+=2-1-1+=【点睛】此题考查的是实数的混合运算,掌握负指数次幂的性质、45°的余弦值、任何非0数的0次幂都等于1和30°的正切值是解决此题的关键.25、(1)y=﹣,y=﹣x+1;(2)x<﹣3或0<x<6;(3)点P的坐标为P(0,5)或(0,﹣5)或(0,8)或(0,)【分析】(1)先利用三角函数求出OD,得出点A坐标,进而求出反比例函数解析式,进而求出点B坐标,将点A,B坐标代入直线解析式中,建立方程组,求解即可得出结论;(2)根据图象直接得出结论;(3)设出点E坐标,进而表示出AE,OE,再分OA=OE,OA=AE,OE=AE三种情况,建立方程求解即可得出结论.【详解】∵AD⊥x轴,∴∠ADO=90°,在Rt△AOD中,AD=4,∴sin∠AOD===,∴OA=5,根据勾股定理得,OD=3,∵点A在第二象限,∴A(﹣3,4),∵点A在反比例函数y=的图象上,∴m=﹣3×4=﹣12,∴反比例函数解析式为y=﹣,∵点B(n,﹣2)在反比例函数y=﹣上,∴﹣2n=﹣12,∴n=6,∴B(6,﹣2),∵点A(﹣3,4),B(6,﹣2)在直线y=kx+b上,∴,∴,∴一次函数的解析式为y=﹣x+1;(2)由图象知,满足kx+b>的x的取值范围为x<﹣3或0<x<6;(3)设点E的坐标为(0,a),∵A(﹣3,4),O(0,0),∴OE=|a|,OA=5,AE=,∵△AOE是等腰三角形,∴①
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年安徽矿业职业技术学院单招综合素质笔试备考试题带答案解析
- 2026年常德职业技术学院单招综合素质笔试模拟试题带答案解析
- 医疗影像专业礼仪
- 护理专业课程改革
- 2026年福州外语外贸学院高职单招职业适应性考试备考题库有答案解析
- 财经新闻写作课件
- 医疗行业投资与并购分析
- 医疗纠纷调解机制完善总结
- 2026年安徽扬子职业技术学院单招职业技能考试参考题库带答案解析
- 医学伦理与职业道德
- 新生儿血栓护理
- 燃气使用分摊协议书
- 《比较教材研究》课件
- 银行保险机构安全保卫工作自查操作手册
- 网吧灭火和应急疏散预案
- (高清版)DB5103∕T 12-2019 自贡彩灯 工艺灯通 用规范
- JJF(冀) 3029-2023 医用(硬性)内窥镜校准规范
- 2025年党支部学习计划范文
- GB/T 18916.66-2024工业用水定额第66部分:石材
- 《农业信息技术》课件-第二章 农业信息感知与管理
- DL∕T 1987-2019 六氟化硫气体泄漏在线监测报警装置技术条件
评论
0/150
提交评论