2023届四川省南充市广安市广安中学数学九上期末学业水平测试试题含解析_第1页
2023届四川省南充市广安市广安中学数学九上期末学业水平测试试题含解析_第2页
2023届四川省南充市广安市广安中学数学九上期末学业水平测试试题含解析_第3页
2023届四川省南充市广安市广安中学数学九上期末学业水平测试试题含解析_第4页
2023届四川省南充市广安市广安中学数学九上期末学业水平测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若A(﹣3,y1),,C(2,y3)在二次函数y=x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3 B.y1<y3<y2 C.y1<y2<y3 D.y3<y2<y12.如下图,以某点为位似中心,将△AOB进行位似变换得到△CDE,记△AOB与△CDE对应边的比为k,则位似中心的坐标和k的值分别为()A. B. C. D.3.如图,,则下列比例式错误的是()A. B. C. D.4.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8cm,MB=2cm,则直径AB的长为()A.9cm B.10cm C.11cm D.12cm5.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定6.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD:DF=3:1,BE=10,那么CE等于()A. B. C. D.7.下面四组图形中,必是相似三角形的为()A.两个直角三角形B.两条边对应成比例,一个对应角相等的两个三角形C.有一个角为40°的两个等腰三角形D.有一个角为100°的两个等腰三角形8.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为9.如图,在平面直角坐标系中,已知点,,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是()A.或 B. C. D.或10.是四边形的外接圆,平分,则正确结论是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,是的中线,点在延长线上,交的延长线于点,若,则___________.12.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是.13.已知二次函数的图像开口向上,则的值为________.14.飞机着陆后滑行的距离y(m)与滑行时间x(s)的函数关系式为y=﹣x2+60x,则飞机着陆后滑行_____m才停下来.15.若二次函数y=mx2+2x+1的图象与x轴有公共点,则m的取值范围是_____.16.直角三角形的直角边和斜边分别是和,则此三角形的外接圆半径长为__________.17.用正五边形钢板制作一个边框总长为40cm的五角星(如图),则正五边形的边长为cm(保留根号)__________.18.如图,已知△AOB是直角三角形,∠AOB=90°,∠B=30°,点A在反比例函数y=的图象上,若点B在反比例函数y=的图象上,则的k值为_______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,点A、B、C的坐标分别为(1,﹣4)、(5,﹣4)、(4,﹣1).(1)以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出A1的坐标;(2)将△A1B1C1绕顶点A1逆时针旋转90°后得到对应的△A1B2C2,画出△A1B2C2,并求出线段A1C1扫过的面积.20.(6分)如图,已知在△ABC中,AD是∠BAC平分线,点E在AC边上,且∠AED=∠ADB.求证:(1)△ABD∽△ADE;(2)AD2=AB·AE.21.(6分)梭梭树因其顽强的生命力和防风固沙的作用,被称为“沙漠植被之王”.新疆北部某沙漠2016年有16万亩梭梭树,经过两年的人工种植和自然繁殖,2018年达到25万亩.按这两年的平均增长率,请估计2019年该沙漠梭梭树的面积.22.(8分)如图,正方形ABCD,将边BC绕点B逆时针旋转60°,得到线段BE,连接AE,CE.(1)求∠BAE的度数;(2)连结BD,延长AE交BD于点F.①求证:DF=EF;②直接用等式表示线段AB,CF,EF的数量关系.23.(8分)如图1,AB、CD是圆O的两条弦,交点为P.连接AD、BC.OM⊥AD,ON⊥BC,垂足分别为M、N.连接PM、PN.图1图2(1)求证:△ADP∽△CBP;(2)当AB⊥CD时,探究PMO与PNO的数量关系,并说明理由;(3)当AB⊥CD时,如图2,AD=8,BC=6,∠MON=120°,求四边形PMON的面积.24.(8分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,3),B(-4,1),C(-1,2).(1)画出以点O为旋转中心,将△ABC顺时针旋转90°得到△A'B'C'(2)求点C在旋转过程中所经过的路径的长.25.(10分)如图,在平面直角坐标系中,点从点运动到点停止,连接,以长为直径作.(1)若,求的半径;(2)当与相切时,求的面积;(3)连接,在整个运动过程中,的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.26.(10分)如图,点是反比例函数图象上的一点,过点作轴于点,连接,的面积为1.点的坐标为.若一次函数的图象经过点,交双曲线的另一支于点,交轴点.(1)求反比例函数和一次函数的解析式;(1)若为轴上的一个动点,且的面积为5,请求出点的坐标.

参考答案一、选择题(每小题3分,共30分)1、A【分析】求出二次函数的对称轴,再根据二次函数的增减性判断即可.【详解】解:对称轴为直线x=﹣=﹣1,∵a=1>0,∴x<﹣1时,y随x的增大而减小,x>﹣1时,y随x的增大而增大,∴y2<y1<y1.故选:A.【点睛】本题考查了二次函数图象上点的坐标特征,求出对称轴解析式,然后利用二次函数的增减性求解是解题的关键.2、C【解析】两对对应点的连线的交点即为位似中心,连接OD、AC,交点为(2,2,)即位似中心为(2,2,);k=OA:CD=6:3=2,故选C.3、A【分析】由题意根据平行线分线段成比例定理写出相应的比例式,即可得出答案.【详解】解:∵DE∥BC,∴,,,∴A错误;故选:A.【点睛】本题考查平行线分线段成比例定理,熟练平行线分线段成比例定理,关键是找准对应关系,避免错选其他答案.4、B【分析】由CD⊥AB,可得DM=1.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,

∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=CD=1cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=1²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.

故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.5、B【解析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式.6、C【分析】根据平行线分线段成比例定理得到,得到BC=3CE,然后利用BC+CE=BE=10可计算出CE的长,即可.【详解】解:∵AB∥CD∥EF,

∴,

∴BC=3CE,

∵BC+CE=BE,

∴3CE+CE=10,

∴CE=.

故选C.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.7、D【分析】根据等腰三角形的性质、直角三角形的性质和相似三角形的判定方法即可判定.【详解】解:两个直角三角形不一定相似,因为只有一个直角相等,∴A不一定相似;两条边对应成比例,一个对应角相等的两个三角形不一定相似,因为这个对应角不一定是夹角;∴B不一定相似;有一个角为40°的两个等腰三角形不一定相似,因为40°的角可能是顶角,也可能是底角,∴C不一定相似;有一个角为100°的两个等腰三角形一定相似,因为100°的角只能是顶角,所以两个等腰三角形的顶角和底角分别相等,∴D一定相似;故选:D.【点睛】本题考查了等腰三角形和直角三角形的性质以及相似三角形的判定,属于基础题型,熟练掌握相似三角形的判定方法是关键.8、D【解析】A、A盘转出蓝色的概率为、B盘转出蓝色的概率为,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为,故选D.9、D【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或-k,把B点的横纵坐标分别乘以或-即可得到点B′的坐标.【详解】解:∵以原点O为位似中心,相似比为,把△ABO缩小,

∴点B(-9,-3)的对应点B′的坐标是(-3,-1)或(3,1).

故选D.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.10、B【分析】根据圆心角、弧、弦的关系对结论进行逐一判断即可.【详解】解:与的大小关系不确定,与不一定相等,故选项A错误;平分,,,故选项B正确;与的大小关系不确定,与不一定相等,选项C错误;∵与的大小关系不确定,选项D错误;故选B.【点睛】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.二、填空题(每小题3分,共24分)11、5【分析】过D点作DH∥AE交EF于H点,证△BDH∽△BCE,△FDH∽△FAE,根据对应边成比例即可求解.【详解】过D点作DH∥AE交EF于H点,∴∠BDH=∠BCE,∠BHD=∠BEC,∴△BDH∽△BCE同理可证:△FDH∽△FAE∵AD是△ABC的中线∴BD=DC∴又∴∴∴故答案为:5【点睛】本题考查的是相似三角形,找到两队相似三角形之间的联系是关键.12、y3>y1>y2.【解析】试题分析:将A,B,C三点坐标分别代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.考点:二次函数的函数值比较大小.13、2【分析】根据题意:的最高次数为2,由开口向上知二次项系数大于0,据此求解即可.【详解】∵是二次函数,

∴,即

解得:,

又∵图象的开口向上,

∴,

∴.故答案为:.【点睛】本题综合考查了二次函数的性质及定义,要注意二次项系数的取值范围.14、600【分析】根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值.【详解】解:∵y=﹣x2+60x=﹣(x﹣20)2+600,∴x=20时,y取得最大值,此时y=600,即该型号飞机着陆后滑行600m才能停下来.故答案为600.【点睛】本题主要考查了二次函数的应用,运用二次函数求最值问题常用公式法或配方法得出是解题关键.15、m≤1且m≠1.【分析】由抛物线与x轴有公共点可知△≥1,再由二次项系数不等于1,建立不等式即可求出m的取值范围.【详解】解:y=mx2+2x+1是二次函数,∴m≠1,由题意可知:△≥1,∴4﹣4m≥1,∴m≤1∴m≤1且m≠1故答案为m≤1且m≠1.【点睛】本题考查二次函数图像与x轴的交点问题,熟练掌握交点个数与△的关系是解题的关键.16、1【分析】根据直角三角形外接圆的半径等于斜边的一半解答即可.【详解】解:根据直角三角形的外接圆的半径是斜边的一半,∵其斜边为16∴其外接圆的半径是1;故答案为:1.【点睛】此题要熟记直角三角形外接圆的半径公式:外接圆的半径等于斜边的一半.17、【分析】根据正五边形的概念可证得,利用对应边成比例列方程即可求得答案.【详解】如图,由边框总长为40cm的五角星,知:,ABCDE为圆内接正五边形,∴,,∴,∴,同理:,∴,∴,设,则,∵,,∴,,即:,化简得:,配方得:,解得:2(负值已舍),故答案为:2【点睛】本题考查了圆内接正五边形的性质、相似三角形的判定和性质、一元二次方程的解法,判定是正确解答本题的关键.18、-3【分析】根据已知条件证得OB=OA,设点A(a,),过点A作AC⊥x轴,过点B作BD⊥x轴,证明△AOC∽△OBD得到,=,得到点B的坐标,由此求出答案.【详解】∵△AOB是直角三角形,∠AOB=90°,∠B=30°,∴OB=OA,设点A(a,),过点A作AC⊥x轴,过点B作BD⊥x轴,∴∠ACO=∠BDO=90°,∴∠BOD+∠OBD=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠AOC=∠OBD,∴△AOC∽△OBD,∴,∴,=,∴B(-,),∴k=-=-3,故答案为:-3.【点睛】此题考查相似三角形的判定及性质,反比例函数的性质,求函数的解析式需确定的图象上点的坐标,由此作辅助线求点B的坐标解决问题.三、解答题(共66分)19、(1)详见解析;(2)图详见解析,【分析】(1)利用关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分,分别找出A、B、C的对应点,顺次连接,即得到相应的图形;(2)根据题意,作出对应点,然后顺次连接即可得到图形,再根据扇形的面积公式即可求出面积.【详解】解:(1)如图所示,△A1B1C1即为所求,点A1的坐标为:(-1,4);(2)如图所示,△A1B2C2即为所求;.所以,线段A1C1扫过的面积=.【点睛】本题考查的是旋转变换作图.无论是何种变换都需先找出各关键点的对应点,然后顺次连接即可.20、(1)、证明过程见解析;(2)、证明过程见解析【分析】试题分析:(1)、根据角平分线得出∠BAD=∠DAE,结合∠AED=∠ADB得出相似;(2)、根据相似得出答案.【详解】试题解析:(1)、∵AD是∠BAC平分线∴∠BAD=∠DAE又∵∠AED=∠ADB∴△ABD∽△ADE(2)、∵△ABD∽△ADE,∴∴AD2=AB·AE.考点:相似三角形的判定与性质21、31.25万亩【分析】根据题意可得等量关系:2016年的梭梭树面积(1+增长率)2=2018年的亩梭梭数面积,根据等量关系列出方程即可算出增长率,即可算出2019年该沙漠梭梭树的面积.【详解】解:设这两年的年平均增长率为x,依题意得:解方程,得(不合题意,舍去),所以估计2019年该沙漠梭梭树的面积为(万亩)答:估计2019年该沙漠梭梭树的面积约为31.25万亩【点睛】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为22、(1)75°;(2)①见解析②【分析】(1)根据题意利用等腰三角形性质以及等量代换求∠BAE的度数;(2)①由正方形的对称性可知,∠DAF=∠DCF=15°,从而证明△BCF≌△ECF,求证DF=EF;②题意要求等式表示线段AB,CF,EF的数量关系,利用等腰直角三角形以及等量代换进行分析.【详解】(1)解:∵AB=BE,∴∠BAE=∠BEA.∵∠ABE=90°-60°=30°∴∠BAE=75°.(2)①证明:∴∠DAF=15°.连结CF.由正方形的对称性可知,∠DAF=∠DCF=15°.∵∠BCD=90°,∠BCE=60°,∴∠DCF=∠ECF=∠DAF=15°.∵BC=EC,CF=CF,∴△DCF≌△ECF.∴DF=EF.②过C作CO垂直BD交于O,由题意求得∠OCF=30°,设OF=x,CF=2x,OB=OC=OD=x,EF=DF=OD-OF=x-x则BC=AB=有即有.【点睛】本题考查正方形相关,综合利用等腰三角形性质以及全等三角形的证明和等量替换进行分析是解题关键.23、(1)证明见解析;(2)PMO=PNO,理由见解析;(3)S平行四边形PMON=6【分析】(1)利用同弧所对的圆周角相等即可证明相似,(2)由OM⊥AD,ON⊥BC得到M、N为AB、CD的中点,再由直角三角形斜边中线等于斜边一半即可解题,(3)由三角形中位线性质得∠QBC=90°,进而证明∠QCB=∠PBD,得到四边形MONP为平行四边形即可解题.【详解】(1)因为同弧所对的圆周角相等,所以∠A=∠C,∠D=∠B,所以△ADP∽△CBP.(2)PMO=PNO因为OM⊥AD,ON⊥BC,所以点M、N为AB、CD的中点,又AB⊥CD,所以PM=AD,PN=BC,所以,∠A=∠APM,∠C=∠CPN,所以∠AMP=∠CNP,得到PMO与PNO.(3)连接CO并延长交圆O于点Q,连接BD.因为AB⊥CD,AM=AD,CN=BC,所以PM=AD,PN=BC.由三角形中位线性质得,ON=.因为CQ为圆O直径,所以∠QBC=90°,则∠Q+∠QCB=90°,由∠DPB=90°,得∠PDB+∠PBD=90°,而∠PDB=∠Q,所以∠QCB=∠PBD,所以BQ=AD,所以PM=ON.同理可得,PN=OM.所以四边形MONP为平行四边形.S平行四边形PMON=6【点睛】本题考查了相似三角形的判定和性质,圆的基本知识,圆周角的性质,直角三角形的性质,平行四边形的判定,综合性强,熟悉圆周角的性质是求解(1)的关键,利用斜边中线等于斜边一半这一性质是求解(2)的关键,证明四边形MONP为平行四边形是求解(3)的关键.24、(1)见解析;(2)【解析】(1)根据网格结构找出点A、B、C绕点O顺时针旋转90∘后的对应点的位置,然后顺次连接即可.(2)在旋转过程中,C所经过的路程为下图中扇形的弧长,即利用扇形弧长公式计算即可.【详解】(1)如图,连接OA、OB、OC并点O为旋转中心,顺时针旋转90°得到A'、B'、C',连接A'B'、B'C'、A'C',△A'B'C'就是所求的三角形.(2)C在旋转过程中所经过的路程为扇形的弧长;所以【点睛】本题考查了旋转作图以及扇形的弧长公式的计算,作出正确的图形是解本题的关键.25、(1);(2);(3)是,【分析】(1)若,则,代入数值即可求得CD,从而求得的半径.(2)当与相切时,则CD⊥AB,利用△ACD∽△ABO,得出比例式求得CD,AD的长,过P点作PE⊥AO于E点,再利用△CPE∽△CAD,得出比例式求得P点的坐标,即可求得△POB的面积.(3)①若与AB有一个交点,则与AB相切,由(2)可得PD⊥AB,PD=,则②若与AB有两个交点,设另一个交点为F,连接CF,则∠CFD=90°,由(2)可得CF=3,过P点作PG⊥AB于G点,则DG=,PG为△DCF的中位线,PG=,则,综上所述,△PAB的面积是定值,为.【详解】(1)根据题意得:OA=8,OB=6,OC=3∴AC=5∵∴即∴CD=∴的半径为(2)在直角三角形AOB中,OA=8,OB=6,∴AB=,当与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论