版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为()A.1 B.2 C.3 D.42.有一则笑话:妈妈正在给一对双胞胎洗澡,先洗哥哥,再洗弟弟.刚把两人洗完,就听到两个小家伙在床上笑.“你们笑什么?”妈妈问.“妈妈!”老大回答,“您给弟弟洗了两回,可是还没给我洗呢!”此事件发生的概率为()A. B. C. D.13.关于x的方程有实数根,则k的取值范围是()A. B.且 C. D.且4.张家口某小区要种植一个面积为3500m2的矩形草坪,设草坪的长为ym,宽为xm,则y关于x的函数解析式为()A.y=3500x B.x=3500y C.y= D.y=5.从1到9这9个自然数中任取一个,既是2的倍数,又是3的倍数的概率是()A. B. C. D.6.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.27.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差(单位:千克)如下表所示:甲乙丙丁242423202.11.921.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是(
)A.甲 B.乙 C.丙 D.丁8.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为()A.42 B.45 C.46 D.489.如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC弧上,则∠ADB的大小为A.46° B.53° C.56° D.71°10.如图,四边形ABCD内接于,它的一个外角,分别连接AC,BD,若,则的度数为()A. B. C. D.11.下列成语描述的事件为随机事件的是()A.守株待兔 B.水中捞月 C.瓮中捉鳖 D.水涨船高12.如图,l1∥l2∥l3,直线a,b与l1,l2,l3分别相交于点A、B、C和点D、E、F,若,DE=4,则DF的长是()A. B. C.10 D.6二、填空题(每题4分,共24分)13.如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则cosα=_____.14.如图将矩形绕点顺时针旋转得矩形,若,,则图中阴影部分的面积为__________.15.如图,在中,,是边上一点,过点作,垂足为,,,,求的长.16.已知m,n是一元二次方程的两根,则________.17.从1,2,3三个数字中任取两个不同的数字,其和是奇数的概率是_________.18.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8米,母线AB=10米,则该圆锥的侧面积是_____平方米(结果保留π).三、解答题(共78分)19.(8分)如图,在中,,点P为内一点,连接PA,PB,PC,求PA+PB+PC的最小值,小华的解题思路,以点A为旋转中心,将顺时针旋转得到,那么就将求PA+PB+PC的值转化为求PM+MN+PC的值,连接CN,当点P,M落在CN上时,此题可解.(1)请判断的形状,并说明理由;(2)请你参考小华的解题思路,证明PA+PB+PC=PM+MN+PC;(3)当,求PA+PB+PC的最小值.20.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,△ABC的三个顶点A,B,C都在格点上.(1)画出△ABC绕点A逆时针旋转90°后得到的△AB1C1;(2)求旋转过程中动点B所经过的路径长(结果保留π).21.(8分)如图,已知,在直角坐标系中,直线与轴、轴分别交于点,点从A点开始以1个单位/秒的速度沿轴向右移动,点从点开始以2个单位/秒的速度沿轴向上移动,如果两点同时出发,经过几秒钟,能使的面积为8个平方单位.
22.(10分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.23.(10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.24.(10分)如图①,在矩形ABCD中,BC=60cm.动点P以6cm/s的速度在矩形ABCD的边上沿A→D的方向匀速运动,动点Q在矩形ABCD的边上沿A→B→C的方向匀速运动.P、Q两点同时出发,当点P到达终点D时,点Q立即停止运动.设运动的时间为t(s),△PDQ的面积为S(cm2),S与t的函数图象如图②所示.(1)AB=cm,点Q的运动速度为cm/s;(2)在点P、Q出发的同时,点O也从CD的中点出发,以4cm/s的速度沿CD的垂直平分线向左匀速运动,以点O为圆心的⊙O始终与边AD、BC相切,当点P到达终点D时,运动同时停止.①当点O在QD上时,求t的值;②当PQ与⊙O有公共点时,求t的取值范围.25.(12分)如图,在平行四边形ABCD中,E为AD边上一点,BE平分∠ABC,连接CE,已知DE=6,CE=8,AE=1.(1)求AB的长;(2)求平行四边形ABCD的面积;(3)求cos∠AEB.26.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.
参考答案一、选择题(每题4分,共48分)1、C【详解】∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴,∴,∴S△ABC=4,∴S△BCD=S△ABC-S△ACD=4-1=1.故选C考点:相似三角形的判定与性质.2、A【分析】根据概率是指某件事发生的可能性为多少解答即可.【详解】解:此事件发生的概率故选A.【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.3、C【分析】关于x的方程可以是一元一次方程,也可以是一元二次方程;当方程为一元一次方程时,k=1;是一元二次方程时,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b2-4ac≥1.【详解】当k=1时,方程为3x-1=1,有实数根,当k≠1时,△=b2-4ac=32-4×k×(-1)=9+4k≥1,解得k≥-.综上可知,当k≥-时,方程有实数根;故选C.【点睛】本题考查了方程有实数根的含义,一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.注意到分两种情况讨论是解题的关键.4、C【解析】根据矩形草坪的面积=长乘宽,得,得.故选C.5、A【分析】从1到9这9个自然数中,既是2的倍数,又是3的倍数只有6一个,所以既是2的倍数,又是3的倍数的概率是九分之一.【详解】解:∵既是2的倍数,又是3的倍数只有6一个,∴P(既是2的倍数,又是3的倍数)=.故选:A.【点睛】本题考查了用列举法求概率,属于简单题,熟悉概率的计算公式是解题关键.6、C【解析】分析:根据直角三角形的性质得出AE=CE=1,进而得出DE=3,利用勾股定理解答即可.详解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=1,∴AE=CE=1,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,CD=,故选C.点睛:此题考查直角三角形的性质,关键是根据直角三角形的性质得出AE=CE=1.7、B【分析】先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定.【详解】因为甲组、乙组的平均数丙组比丁组大,而乙组的方差比甲组的小,所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.8、C【解析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数.【详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48∴中位数为.故答案为:46.【点睛】找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中位数的关键.9、C【解析】试题分析:∵∠ABC=71°,∠CAB=53°,∴∠ACB=180°﹣∠ABC﹣∠BAC=56°.∵∠ADB和∠ACB都是弧AB对的圆周角,∴∠ADB=∠ACB=56°.故选C.10、A【分析】先根据圆内接四边形的性质得出∠ADC=∠EBC=65°,再根据AC=AD得出∠ACD=∠ADC=65°,故可根据三角形内角和定理求出∠CAD=50°,再由圆周角定理得出∠DBC=∠CAD=50°.【详解】解:∵四边形ABCD内接于⊙O,∴∠ADC=∠EBC=65°.∵AC=AD,∴∠ACD=∠ADC=65°,∴∠CAD=180°-∠ACD-∠ADC=50°,∴∠DBC=∠CAD=50°,故选:A.【点睛】本题考查了圆内接四边形的性质,以及圆周角定理的推论,熟知圆内接四边形的对角互补是解答此题的关键.也考查了等腰三角形的性质以及三角形内角和定理.11、A【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.守株待兔是随机事件,故A符合题意;B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12、C【解析】试题解析:又DE=4,∴EF=6,∴DF=DE+EF=10,故选C.二、填空题(每题4分,共24分)13、【分析】分别求出大正方形和小正方形的边长,再利用勾股定理列式求出AC,然后根据正弦和余弦的定义即可求cosα的值.【详解】∵小正方形面积为49,大正方形面积为169,∴小正方形的边长是7,大正方形的边长是13,在Rt△ABC中,AC2+BC2=AB2,即AC2+(7+AC)2=132,整理得,AC2+7AC−60=0,解得AC=5,AC=−12(舍去),∴BC==12,∴cosα==故填:.【点睛】本题考查了勾股定理的证明,锐角三角形函数的定义,利用勾股定理列式求出直角三角形的较短的直角边是解题的关键.14、【分析】连接BD,BF,根据S阴影=S△ABD+S扇形BDF+S△BEF-S矩形ABCD-S扇形BCE即可得出答案.【详解】如图,连接BD,BF,在矩形ABCD中,∠A=90°,AB=3,AD=BC=2,∴BD=,S矩形ABCD=AB×BC=3×2=6∵矩形BEFG是由矩形ABCD绕点B顺时针旋转90°得到的∴BF=BD=,∠DBF=90°,∠CBE=90°,S矩形BEFG=S矩形ABCD=6则S阴影=S△ABD+S扇形BDF+S△BEF-S矩形ABCD-S扇形BCE=S矩形ABCD+S扇形BDF+S矩形BEFG-S矩形ABCD-S扇形BCE==故答案为:.【点睛】本题考查了与扇形有关的面积计算,熟练掌握扇形面积公式,将图形进行分割是解题的关键.15、.【分析】在中,根据求得CE,在中,根据求得BC,最后将CE,BC的值代入即可.【详解】解:在中,,.在中,,.的长为.【点睛】本题考查了解直角三角形,熟练掌握三角函数定义是解题的关键.16、-1【分析】根据根与系数的关系求出m+n与mn的值,然后代入计算即可.【详解】∵m,n是一元二次方程的两根,∴m+n=2,mn=-3,∴2-3=-1.故答案为:-1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.17、【分析】由1,2,3三个数字组成的无重复数字的两位数字共有6个,其中奇数有4个,由此求得所求事件的概率.【详解】解:由1,2,3三个数字组成的无重复数字的两位数字共有3×2=6个,其中奇数有2×2=4个,
故从中任取一个数,则恰为奇数的概率是
,
故答案为:.【点睛】本题考查古典概型及其概率计算公式的应用,属于基础题.解题的关键是掌握概率公式进行计算.18、【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的底面周长=2×π×6=12π米,∴S扇形=lr=×12π×10=60π米2,故答案为60π.【点睛】本题考查圆锥的侧面积,掌握扇形面积的计算方法S=lr是解题的关键.三、解答题(共78分)19、(1)等边三角形,见解析;(2)见解析;(3)【解析】(1)根据旋转的性质可以得出,即可证明出是等边三角形;(2)绕点A顺时针旋转得到,根据的旋转的性质得到,,相加即可得;(3)由(2)知,当C、P、M、N四点共线时,PA+PB+PC取到最小,由,,可得CN垂直平分AB,再利用直角三角形的边角关系,从而求出PA+PB+PC的最小值.【详解】(1)等边三角形;绕A点顺时针旋转得到MA,,是等边三角形.(2)绕点A顺时针旋转得到,,由(1)可知,.(3)由(2)知,当C、P、M、N四点共线时,PA+PB+PC取到最小.连接BN,由旋转的性质可得:AB=AN,∠BAM=60°∴是等边三角形;,,是AB的垂直平分线,垂足为点Q,,,,即的最小值为.【点睛】本题为旋转综合题,掌握旋转的性质、等边三角形的判定及性质及理解小华的思路是关键.20、(1)画图见解析;(2)点B所经过的路径长为.【解析】(1)让三角形的顶点B、C都绕点A逆时针旋转90°后得到对应点,顺次连接即可.
(2)旋转过程中点B所经过的路线是一段弧,根据弧长公式计算即可.【详解】(1)如图.(2)由(1)知这段弧所对的圆心角是90°,半径AB==5,∴点B所经过的路径长为.【点睛】本题主要考查了作旋转变换图形,勾股定理,弧长计算公式,熟练掌握旋转的性质和弧长的计算公式是解答本题的关键.21、2秒,4秒或秒【分析】首先求得直线与两坐标轴的交点坐标,然后表示出三角形的两边利用三角形的面积计算公式列出方程计算即可.【详解】解:直线AC与x轴交于点A(-6,0),与y轴交于点C(0,1),所以,OA=6,OC=1.设经过x秒钟,则OQ为2x.当时,点P在线段OA上,底OP=,可列方程,解得.当时,点P与点O重合或在线段OA的延长线上,底OP=,可列方程,解得,而不合题意舍去.综上所述,经过2秒,4秒或秒能使△PQO的面积为1个平方单位.【点睛】本题考查了一次函数和一元二次方程的应用,解题的关键是能够根据直线的解析式确定直线与两坐标轴的交点,从而求得有关的线段的长,注意分类讨论,难度不大.22、(1)画图见解析;(2)画图见解析,C2的坐标为(﹣6,4).【解析】试题分析:利用关于点对称的性质得出的坐标进而得出答案;
利用关于原点位似图形的性质得出对应点位置进而得出答案.试题解析:(1)△A1BC1如图所示.(2)△A2B2C2如图所示,点C2的坐标为(-6,4).23、(1)反比例函数表达式为,正比例函数表达式为;(2),.【解析】试题分析:(1)将点A坐标(2,-2)分别代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,可将△ABC的面积转化为△OBC的面积.试题解析:()把代入反比例函数表达式,得,解得,∴反比例函数表达式为,把代入正比例函数,得,解得,∴正比例函数表达式为.()直线由直线向上平移个单位所得,∴直线的表达式为,由,解得或,∵在第四象限,∴,连接,∵,,,.24、(1)30,6;(2)①;②≤t≤.【分析】(1)设点Q的运动速度为a,则由图②可看出,当运动时间为5s时,△PDQ有最大面积450,即此时点Q到达点B处,可列出关于a的方程,即可求出点Q的速度,进一步求出AB的长;(2)①如图1,设AB,CD的中点分别为E,F,当点O在QD上时,用含t的代数式分别表示出OF,QC的长,由OF=QC可求出t的值;②设AB,CD的中点分别为E,F,⊙O与AD,BC的切点分别为N,G,过点Q作QH⊥AD于H,如图2﹣1,当⊙O第一次与PQ相切于点M时,证△QHP是等腰直角三角形,分别用含t的代数式表示CG,QM,PM,再表示出QP,由QP=QH可求出t的值;同理,如图2﹣2,当⊙O第二次与PQ相切于点M时,可求出t的值,即可写出t的取值范围.【详解】(1)设点Q的运动速度为a,则由图②可看出,当运动时间为5s时,△PDQ有最大面积450,即此时点Q到达点B处,∵AP=6t,∴S△PDQ=(60﹣6×5)×5a=450,∴a=6,∴AB=5a=30,故答案为:30,6;(2)①如图1,设AB,CD的中点分别为E,F,当点O在QD上时,QC=AB+BC﹣6t=90﹣6t,OF=4t,∵OF∥QC且点F是DC的中点,∴OF=QC,即4t=(90﹣6t),解得,t=;②设AB,CD的中点分别为E,F,⊙O与AD,BC的切点分别为N,G,过点Q作QH⊥AD于H,如图2﹣1,当⊙O第一次与PQ相切于点M时,∵AH+AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=90﹣4t﹣6t=90﹣10t,PM=PN=60﹣4t﹣6t=60﹣10t,∴QP=QM+MP=150﹣20t,∵QP=QH,∴150﹣20t=30,∴t=;如图2﹣2,当⊙O第二次与PQ相切于点M时,∵AH+AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=4t﹣(90﹣6t)=10t﹣90,PM=PN=4t﹣(60﹣6t)=10t﹣60,∴QP=QM+MP=20t﹣150,∵QP=QH,∴20t﹣150=30,∴t=,综上所述,当PQ与⊙O有公共点时,t的取值范围为:≤t≤.【点睛】本题考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度国际时尚品牌代理与分销服务合同2篇
- 建筑施工设计分包合同样本
- 燃料供应合同的安全协议解读
- 企业间借款合同范本格式
- 河沙材料采购合同
- 二零二四年度市场推广合同:社交平台推广与粉丝运营协议
- 永州市住宅买卖合同范例
- 轮胎购销合同格式范本范本
- 抗化学腐蚀性能玻璃购销合同
- 树苗购销合同范本格式
- 第六单元测量(大单元教学设计)-2024-2025学年二年级上册数学北师大版
- 地产开发风险评估
- 互联网医院合作协议
- 互联网中的数据构成(第一课时)教学设计 2023-2024学年苏科版(2023)初中信息技术七年级上册
- 2024年江苏地区“三新”供电服务公司招聘135人(第二批)高频500题难、易错点模拟试题附带答案详解
- 山东教育出版社初中美术 七年级上册第二单元 读书、爱书的情结 单元教学设计
- 湖南省娄底市2024-2025学年高一物理上学期期末考试试题含解析
- 课件:《中华民族共同体概论》第六讲 五胡入华与中华民族大交融(魏晋南北朝)
- 2024 smart汽车品牌用户社区运营全案
- 国家开放大学专科《应用写作(汉语)》一平台在线形考(形考任务一至七)试题及答案
- 2024秋期国家开放大学专科《毛泽东思想和中国特色社会主义理论体系概论》一平台在线形考(专题检测一)试题及答案
评论
0/150
提交评论