版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30° B.60° C.90° D.120°2.下列计算正确的是()A. B.C. D.3.以下事件为必然事件的是()A.掷一枚质地均匀的骰子,向上一面的点数小于6B.多边形的内角和是C.二次函数的图象不过原点D.半径为2的圆的周长是4π4.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,5.如图是一个长方体的左视图和俯视图,则其主视图的面积为()A.6 B.8 C.12 D.246.下列函数关系式中,是的反比例函数的是()A. B. C. D.7.从一定高度抛一个瓶盖100次,落地后盖面朝下的有55次,则下列说法中错误的是A.盖面朝下的频数是55B.盖面朝下的频率是0.55C.盖面朝下的概率不一定是0.55D.同样的试验做200次,落地后盖面朝下的有110次8.下列说法正确的是()A.“概率为1.1111的事件”是不可能事件B.任意掷一枚质地均匀的硬币11次,正面向上的一定是5次C.“任意画出一个等边三角形,它是轴对称图形”是随机事件D.“任意画出一个平行四边行,它是中心对称图形”是必然事件9.在平面直角坐标系中,点M(1,﹣2)与点N关于原点对称,则点N的坐标为()A.(﹣2,1) B.(1,﹣2) C.(2,-1) D.(-1,2)10.袋子中有4个黑球和3个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机从袋中摸出一个球,摸到白球的概率为()A. B. C. D.11.如图,在正方形中,绕点顺时针旋转后与重合,,,则的长度为()A.4 B. C.5 D.12.下列命题是真命题的个数是().①64的平方根是;②,则;③三角形三条内角平分线交于一点,此点到三角形三边的距离相等;④三角形三边的垂直平分线交于一点.A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.已知一列分式,,,,,,…,观察其规律,则第n个分式是_______.14.如图,△ABC的外心的坐标是____.15.已知方程x2+mx+3=0的一个根是1,则它的另一个根是_____,m的值是______.16.如图,正五边形ABCDE内接于⊙O,若⊙O的半径为10,则的长为____.17.如图是某几何体的三视图及相关数据,则该几何体的侧面积是_____.18.某圆锥的底面半径是2,母线长是6,则该圆锥的侧面积等于________.三、解答题(共78分)19.(8分)如图,等腰中,,点是边上一点,在上取点,使(1)求证:;(2)若,求的长.20.(8分)某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个柱子,点恰好在水面中心,安装在柱子顶端处的圆形喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过的任意平面上,水流喷出的高度与水平距离之间的关系如图所示,建立平面直角坐标系,右边抛物线的关系式为.请完成下列问题:(1)将化为的形式,并写出喷出的水流距水平面的最大高度是多少米;(2)写出左边那条抛物线的表达式;(3)不计其他因素,若要使喷出的水流落在池内,水池的直径至少要多少米?21.(8分)如图,为测量小岛A到公路BD的距离,先在点B处测得∠ABD=37°,再沿BD方向前进150m到达点C,测得∠ACD=45°,求小岛A到公路BD的距离.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.(10分)如图,在Rt△ABC中,∠ACB90°,∠ABC的平分线BD交AC于点D.(1)求作⊙O,使得点O在边AB上,且⊙O经过B、D两点(要求尺规作图,保留作图痕迹,不写作法);(2)证明AC与⊙O相切.23.(10分)为进一步发展基础教育,自年以来,某县加大了教育经费的投入,年该县投入教育经费万元.年投入教育经费万元.假设该县这两年投入教育经费的年平均增长率相同.求这两年该县投入教育经费的年平均增长率.24.(10分)化简求值:,其中.25.(12分)在矩形中,,,是射线上的点,连接,将沿直线翻折得.(1)如图①,点恰好在上,求证:∽;(2)如图②,点在矩形内,连接,若,求的面积;(3)若以点、、为顶点的三角形是直角三角形,则的长为.26.如图,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(1)把△A1B1C1绕点A1按逆时针方向旋转90°,得到△A1B1C1,在网格中画出旋转后的△A1B1C1.
参考答案一、选择题(每题4分,共48分)1、C【详解】分析:先根据题意确定旋转中心,然后根据旋转中心即可确定旋转角的大小.详解:如图,连接A′A,BB′,分别A′A,BB′作的中垂线,相交于点O.
显然,旋转角为90°,故选C.点睛:考查了旋转的性质,解题的关键是能够根据题意确定旋转中心,难度不大.先找到这个旋转图形的两对对应点,连接对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线的交点就是旋转中心.2、C【分析】分别根据合并同类项的法则、完全平方公式、幂的乘方以及同底数幂的乘法化简即可判断.【详解】A、,故选项A不合题意;B.,故选项B不合题意;C.,故选项C符合题意;D.,故选项D不合题意,故选C.【点睛】本题考查了合并同类项、幂的运算以及完全平方公式,熟练掌握各运算的运算法则是解答本题的关键.3、D【分析】必然事件是指一定会发生的事件,概率为1,根据该性质判断即可.【详解】掷一枚质地均匀的骰子,每一面朝上的概率为,而小于6的情况有5种,因此概率为,不是必然事件,所以A选项错误;多边形内角和公式为,不是一个定值,而是随着多边形的边数n的变化而变化,所以B选项错误;二次函数解析式的一般形式为,而当c=1时,二次函数图象经过原点,因此不是必然事件,所以C选项错误;圆周长公式为,当r=2时,圆的周长为4π,所以D选项正确.故选D.【点睛】本题考查了必然事件的概念,关键是根据不同选项所包含的知识点的概念进行判断对错;必然事件发生的概率为1,随机事件发生的概率为1<P<1,不可能事件发生的概率为1.4、D【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.5、B【分析】左视图可得到长方体的宽和高,俯视图可得到长方体的长和宽,主视图表现长方体的长和高,让长×高即为主视图的面积.【详解】解:由左视图可知,长方体的高为2,由俯视图可知,长方体的长为4,∴长方体的主视图的面积为:;故选:B.【点睛】本题考查主视图的面积的求法,根据其他视图得到几何体的长和高是解决本题的关键.6、C【分析】根据反比例函数的定义即可得出答案.【详解】A为正比例函数,B为一次函数,C为反比例函数,D为二次函数,故答案选择C.【点睛】本题考查的是反比例函数的定义:形如的式子,其中k≠0.7、D【分析】根据频数,频率及用频率估计概率即可得到答案.【详解】A、盖面朝下的频数是55,此项正确;B、盖面朝下的频率是=0.55,此项正确;C、盖面朝下的概率接近于0.55,但不一定是0.55,此项正确;D、同样的试验做200次,落地后盖面朝下的在110次附近,不一定必须有110次,此项错误;故选:D.【点睛】本题考查了频数,频率及用频率估计概率,掌握知识点是解题关键.8、D【分析】根据不可能事件、随机事件、以及必然事件的定义(即根据事件发生的可能性大小)逐项判断即可.【详解】在一定条件下,不可能发生的事件叫不可能事件;一定会发生的事件叫必然事件;可能发生也可能不发生的事件叫随机事件A、“概率为的事件”是随机事件,此项错误B、任意掷一枚质地均匀的硬币11次,正面向上的不一定是5次,此项错误C、“任意画出一个等边三角形,它是轴对称图形”是必然事件,此项错误D、“任意画出一个平行四边行,它是中心对称图形”是必然事件,此项正确故选:D.【点睛】本题考查了不可能事件、随机事件、以及必然事件的定义,掌握理解相关定义是解题关键.9、D【解析】解:点M(1,﹣2)与点N关于原点对称,点N的坐标为故选D.【点睛】本题考查关于原点对称的点坐标特征:横坐标和纵坐标都互为相反数.10、A【分析】根据题意,让白球的个数除以球的总数即为摸到白球的概率.【详解】解:根据题意,袋子中有4个黑球和3个白球,∴摸到白球的概率为:;故选:A.【点睛】本题考查了概率的基本计算,摸到白球的概率是白球数比总的球数.11、D【分析】先根据旋转性质及正方形的性质构造方程求正方形的边长,再利用勾股定理求值即可.【详解】绕点顺时针旋转后与重合四边形ABCD为正方形在中,故选D.【点睛】本题考查了全等三角形的性质、旋转的性质、正方形的性质、勾股定理,找到直角三角形运用勾股定理求值是解题的关键.12、C【分析】分别根据平方根、等式性质、三角形角平分线、线段垂直平分线性质进行分析即可.【详解】①64的平方根是,正确,是真命题;②,则不一定,可能;故错误;③根据角平分线性质,三角形三条内角平分线交于一点,此点到三角形三边的距离相等;是真命题;④根据三角形外心定义,三角形三边的垂直平分线交于一点,是真命题;故选:C【点睛】考核知识点:命题的真假.理解平方根、等式性质、三角形角平分线、线段垂直平分线性质是关键.二、填空题(每题4分,共24分)13、【分析】分别找出符号,分母,分子的规律,从而得出第n个分式的式子.【详解】观察发现符号规律为:正负间或出现,故第n项的符号为:分母规律为:y的次序依次增加2、3、4等等,故第n项为:=分子规律为:x的次数为对应项的平方加1,故第n项为:故答案为:.【点睛】本题考查找寻规律,需要注意,除了寻找数字规律外,我们还要寻找符号规律.14、【解析】试题解析:∵△ABC的外心即是三角形三边垂直平分线的交点,∴作图得:∴EF与MN的交点O′即为所求的△ABC的外心,∴△ABC的外心坐标是(﹣2,﹣1).15、3-4【解析】试题分析:根据韦达定理可得:·==3,则方程的另一根为3;根据韦达定理可得:+=-=4=-m,则m=-4.考点:方程的解16、2π【分析】利用正五边形的性质得出中心角度数,进而利用弧长公式求出即可.【详解】解:如图所示:连接OA、OB.∵⊙O为正五边形ABCDE的外接圆,⊙O的半径为10,∴∠AOB==72°,∴的长为:.故答案为:2π.【点睛】本题主要考查正多边形与圆、弧长公式等知识,得出圆心角度数是解题关键.17、15π.【解析】试题分析:由三视图可知这个几何体是母线长为5,高为4的圆锥,∴a=2=6,∴底面半径为3,∴侧面积为:π×5×3=15π.考点:1.三视图;2.圆锥的侧面积.18、【分析】根据圆锥的侧面积公式即可得.【详解】圆锥的侧面积公式:,其中为底面半径,为圆锥母线则该圆锥的侧面积为故答案为:.【点睛】本题考查了圆锥的侧面积公式,熟记公式是解题关键.三、解答题(共78分)19、(1)见解析;(2).【分析】(1)利用三角形外角定理证得∠EDC=∠DAB,再根据两角相等即可证明△ABD∽△DCE;(2)作高AF,利用三角函数求得,继而求得,再根据△ABD∽△DCE,利用对应边成比例即可求得答案.【详解】(1)∵△ABC是等腰三角形,且∠BAC=120°,
∴∠ABD=∠ACB=30°,
∴∠ABD=∠ADE=30°,
∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,
∴∠EDC=∠DAB,
∴△ABD∽△DCE;(2)过作于,∵△ABC是等腰三角形,且∠BAC=120°,,∴∠ABD=∠ACB=30°,,则,,,,,,所以.【点睛】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、解直角三角形,证得△ABD∽△DCE是解题的关键.20、(1)喷出的水流距水平面的最大高度是4米.(2).(3)水池的直径至少要6米.【分析】(1)利用配方法将一般式转化为顶点式,即可求出喷出的水流距水平面的最大高度;(2)根据两抛物线的关于y轴对称,即可求出左边抛物线的二次项系数和顶点坐标,从而求出左边抛物线的解析式;(3)先求出右边抛物线与x轴的交点的横坐标,利用对称性即可求出水池的直径的最小值.【详解】解:(1)∵,∴抛物线的顶点式为.∴喷出的水流距水平面的最大高度是4米.(2)∵两抛物线的关于y轴对称∴左边抛物线的a=-1,顶点坐标为(-1,4)左边抛物线的表达式为.(3)将代入,则得,解得,(求抛物线与x轴的右交点,故不合题意,舍去).∵(米)∴水池的直径至少要6米.【点睛】此题考查的是二次函数的应用,掌握将二次函数的一般式转化为顶点式、利用顶点式求二次函数的解析式和求抛物线与x轴的交点坐标是解决此题的关键.21、1米.【分析】过A作AE⊥CD垂足为E,设AE=x米,再利用锐角三角函数关系得出BE=x,CE=x,根据BC=BE﹣CE,得到关于x的方程,即可得出答案.【详解】解:过A作AE⊥CD垂足为E,设AE=x米,在Rt△ABE中,tan∠B=,∴BE==x,在Rt△ABE中,tan∠ACD=,∴CE==x,∵BC=BE﹣CE,∴x﹣x=150,解得:x=1.答:小岛A到公路BD的距离为1米.【点睛】本题考查了三角函数和一元一次方程的问题,掌握特殊三角函数值和解一元一次方程的方法是解题的关键.22、(1)见解析;(2)见解析【分析】(1)作BD的垂直平分线交AB于O,再以O点为圆心,OB为半径作圆即可;(2)证明OD∥BC得到∠ODC=90°,然后根据切线的判定定理可判断AC为⊙O的切线.【详解】解:(1)如图,⊙O为所作;
(2)证明:连接OD,如图,
∵BD平分∠ABC,
∴∠CBD=∠ABD,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠CBD=∠ODB,
∴OD∥BC,
∴∠ODA=∠ACB,
又∠ACB=90°,
∴∠ODA=90°,
即OD⊥AC,
∵点D是半径OD的外端点,
∴AC与⊙O相切.【点睛】本题考查了作图—复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的判定.23、该县投入教育经费的年平均增长率为20%【分析】设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;【详解】解:设该县投入教育经费的年平均增长率为x,根据题意得:
6000(1+x)2=8640
解得:x1=0.2=20%,x2=-2.2(不合题意,舍去),经检验,x=20%符合题意,答:该县投入教育经费的年平均增长率为20%;【点睛】此题考查了一元二次方程的应用,掌握增长率问题是本题的关键,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.24、,1【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将的值代入计算即可求出值.【详解】;当时,原式.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.25、(1)见解析;(2)的面积为;(3)、5、1、【分析】(1)先说明∠CEF=∠AFB和,即可证明∽;(2)过点作交与点,交于点,则;再结合矩形的性质,证得△FGE∽△AHF,得到AH=5GF;然后运用勾股定理求得GF的长,最后运用三角形的面积公式解答即可;(3)分点E在线段CD上和DC的延长线上两种情况,然后分别再利用勾股定进行解答即可.【详解】(1)解:∵矩形中,∴由折叠可得∵∴∴在和中∵,∴∽(2)解:过点作交与点,交于点,则∵矩形中,∴由折叠可得:,,∵∴∴在和中∵∴∽∴∴∴在中,∵∴∴∴的面积为(3)设DE=x,以点E、F、C为顶点的三角形是直角三角形,则:①当点E在线段CD上时,∠DAE<45°,∴∠AED>45°,由折叠性质得:∠AEF=∠AED>45°,∴∠DEF=∠AED+∠AEF>90°,∴∠CEF<90°,∴只有∠EFC=90°或∠ECF=90°,a,当∠EFC=90°时,如图所示:由折叠性质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024高一历史寒假作业同步练习题世界经济的全球化趋势含解析
- 手改合同模板
- 买安置房协议合同范例
- 外墙清洗费合同范例
- 做饭阿姨合同范例
- 2024年呼和浩特客运从业资格证考试试题答案解析
- 房屋建造合伙合同模板
- 2024年呼和浩特客车从业资格证模拟考试答题题库
- 2024年昭通道路客运输从业资格证2024年考试题
- 高一语文文言文虚词总结
- 建筑装饰的室内装修工艺与施工技术考核试卷
- 交通运输行业火灾安全预案
- 电气工程施工应急预案
- 厂中厂承租方对出租方日常安全检查记录表
- 消防培训课件
- 第十二届广东省安全知识竞赛暨粤港澳安全知识竞赛决赛备赛试题库(含答案)
- 江苏省南通市如东高级中学2024-2025学年高二上学期期中考试数学试卷(含答案)
- 预防倾倒综合征
- 第六章 数列综合测试卷(新高考专用)(学生版) 2025年高考数学一轮复习专练(新高考专用)
- 贸易安全内部培训教材
- 中国话-完整版PPT课件
评论
0/150
提交评论