2023届四川省广元市朝天区五校联考九年级数学第一学期期末调研模拟试题含解析_第1页
2023届四川省广元市朝天区五校联考九年级数学第一学期期末调研模拟试题含解析_第2页
2023届四川省广元市朝天区五校联考九年级数学第一学期期末调研模拟试题含解析_第3页
2023届四川省广元市朝天区五校联考九年级数学第一学期期末调研模拟试题含解析_第4页
2023届四川省广元市朝天区五校联考九年级数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,二次函数的图象,则下列结论正确的是()①;②;③;④A.①②③ B.②③④ C.①③④ D.①②③④2.如图,若AB是⊙0的直径,CD是⊙O的弦,∠ABD=56°,则∠BCD是()A.34° B.44° C.54° D.56°3.在平面直角坐标系中,开口向下的抛物线y=ax2+bx+c的一部分图象如图所示,它与x轴交于A(1,0),与y轴交于点B(0,3),对称轴是直线x=-1.则下列结论正确的是()A.ac>0 B.b2-4ac=0 C.a-b+c<0 D.当-3<x<1时,y>04.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表。如图是一个根据北京的地理位置设计的圭表,其中,立柱的高为。已知,冬至时北京的正午日光入射角约为,则立柱根部与圭表的冬至线的距离(即的长)作为()A. B. C. D.5.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差 B.平均数 C.众数 D.中位数6.已知点,,,在二次函数的图象上,则,,的大小关系是()A. B. C. D.7.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()A.54° B.27° C.36° D.46°8.在Rt△ABC中,cosA=,那么sinA的值是()A. B. C. D.9.如图,平行于x轴的直线与函数y1=(a>1,x>1),y2=(b>1.x>1)的图象分别相交于A、B两点,且点A在点B的右侧,在X轴上取一点C,使得△ABC的面积为3,则a﹣b的值为()A.6 B.﹣6 C.3 D.﹣310.如图,AB是⊙O的直径,OC是⊙O的半径,点D是半圆AB上一动点(不与A、B重合),连结DC交直径AB与点E,若∠AOC=60°,则∠AED的范围为()A.0°<∠AED<180° B.30°<∠AED<120°C.60°<∠AED<120° D.60°<∠AED<150°11.我国民间,流传着许多含有吉祥意义的文字图案,表示对幸福生活的向往,良辰佳节的祝贺.比如下列图案分别表示“福”、“禄”、“寿”、“喜”,其中是中心对称图形的是()A.①③ B.①④ C.②③ D.②④12.如图,△ABC的三边的中线AD,BE,CF的公共点为G,且AG:GD=2:1,若S△ABC=12,则图中阴影部分的面积是()A.3 B.4 C.5 D.6二、填空题(每题4分,共24分)13.如图,在中,,点是边的中点,,则的值为___________.14.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为_____.15.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.16.微信给甲、乙、丙三人,若微信的顺序是任意的,则第一个微信给甲的概率为_____.17.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径长为,母线长为.在母线上的点处有一块爆米花残渣,且,一只蚂蚁从杯口的点处沿圆锥表面爬行到点,则此蚂蚁爬行的最短距离为____.18.关于x的一元二次方程的一个根为1,则方程的另一根为______.三、解答题(共78分)19.(8分)如图1,已知中,,,,它在平面直角坐标系中位置如图所示,点在轴的负半轴上(点在点的右侧),顶点在第二象限,将沿所在的直线翻折,点落在点位置(1)若点坐标为时,求点的坐标;(2)若点和点在同一个反比例函数的图象上,求点坐标;(3)如图2,将四边形向左平移,平移后的四边形记作四边形,过点的反比例函数的图象与的延长线交于点,则在平移过程中,是否存在这样的,使得以点为顶点的三角形是直角三角形且点在同一条直线上?若存在,求出的值;若不存在,请说明理由20.(8分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=,n=;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.21.(8分)若矩形的长为,宽为,面积保持不变,下表给出了与的一些值求矩形面积.(1)请你根据表格信息写出与之间的函数关系式;(2)根据函数关系式完成下表184222.(10分)如图,已知:在△ABC中,AB=AC,BD是AC边上的中线,AB=13,BC=10,(1)求△ABC的面积;(2)求tan∠DBC的值.23.(10分)计算:(1)(2)解方程:24.(10分)如图,有一直径是20厘米的圆型纸片,现从中剪出一个圆心角是90°的扇形ABC.(1)求剪出的扇形ABC的周长.(2)求被剪掉的阴影部分的面积.25.(12分)在平面直角坐标系中,直线与双曲线交于点A(2,a).(1)求与的值;(2)画出双曲线的示意图;(3)设点是双曲线上一点(与不重合),直线与轴交于点,当时,结合图象,直接写出的值.26.如图1,四边形ABCD中,,,点P为DC上一点,且,分别过点A和点C作直线BP的垂线,垂足为点E和点F.证明:∽;若,求的值;如图2,若,设的平分线AG交直线BP于当,时,求线段AG的长.

参考答案一、选择题(每题4分,共48分)1、B【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可.【详解】∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故④正确;∵0<−<1,∴b>0,故①错误;当x=−1时,y=a−b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2−4ac>0,故②正确正确的有3个,故选:C.【点睛】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).2、A【分析】根据圆周角定理由AB是⊙O的直径可得∠ADB=90°,再根据互余关系可得∠A=90°-∠∠ABD=34°,最后根据圆周角定理可求解.【详解】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=56°,∴∠A=90°-∠ABD=34°,∴∠BCD=∠A=34°,故答案选A.【点睛】本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.解题的关键是正确利用图中各角之间的关系进行计算.3、D【分析】根据二次函数图象和性质逐项判断即可.【详解】解:∵抛物线y=ax2+bx+c的图象开口向下,与y轴交于点B(0,3),∴a<0,c>0,∴ac<0,故A选项错误;∵抛物线y=ax2+bx+c与x轴有两个交点,∴b2-4ac>0,故B选项错误;∵对称轴是直线x=-1,∴当x=-1时,y>0,即a-b+c>0,故C选项错误;∵抛物线y=ax2+bx+c对称轴是直线x=-1,与x轴交于A(1,0),∴另一个交点为(-3,0),∴当-3<x<1时,y>0,故D选项正确.故选:D.【点睛】本题考查二次函数的图象和性质.熟练掌握二次函数的图象和性质是解题的关键.4、D【解析】在Rt△ABC中利用正切函数即可得出答案.【详解】解:在Rt△ABC中,tan∠ABC=,∴立柱根部与圭表的冬至线的距离(即BC的长)为=.故选:D.【点睛】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数解答.5、A【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差6、D【分析】由抛物线开口向上且对称轴为直线x=3知离对称轴水平距离越远,函数值越大,据此求解可得.【详解】∵二次函数中a=1>0,∴抛物线开口向上,有最小值.∵x=−=3,∴离对称轴水平距离越远,函数值越大,∵由二次函数图象的对称性可知4−3<3−<3−1,∴.故选:D.【点睛】本题主要考查二次函数图象上点的坐标特征,解题的关键是掌握二次函数的图象与性质.7、C【分析】先利用等腰三角形的性质和三角形内角和计算出∠AOB的度数,然后利用圆周角解答即可.【详解】解:∵OA=OB,∴∠OBA=∠OAB=54°,∴∠AOB=180°﹣54°﹣54°=72°,∴∠ACB=∠AOB=36°.故答案为C.【点睛】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.8、B【分析】利用同角三角函数间的基本关系求出sinA的值即可.【详解】:∵Rt△ABC中,cosA=,

∴sinA==,

故选B.【点睛】本题考查了同角三角函数的关系,以及特殊角的三角函数值,熟练掌握同角三角函数的关系是解题的关键.9、A【分析】△ABC的面积=•AB•yA,先设A、B两点坐标(其y坐标相同),然后计算相应线段长度,用面积公式即可求解.【详解】设A(,m),B(,m),则:△ABC的面积=•AB•yA=•(﹣)•m=3,则a﹣b=2.故选A.【点睛】此题主要考查了反比例函数系数的几何意义,以及图象上点的特点,求解函数问题的关键是要确定相应点坐标,通过设A、B两点坐标,表示出相应线段长度即可求解问题.10、D【分析】连接BD,根据圆周角定理得出∠ADC=30°,∠ADB=90°,再根据三角形的外角性质可得到结论.【详解】如图,连接BD,由∵∠AOC=60°,∴∠ADC=30°,∴∠DEB>30°∴∠AED<150°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠EDB=90°-30°=60°,∴∠AED>60°∴60°<∠AED<150°,故选D【点睛】本题考查了圆周角定理和三角形的外角性质.正确应用圆周角定理找出∠ADC=30°,∠ADB=90°是解题的关键.11、D【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【详解】解:①不是中心对称图形,故本选项不合题意;②是中心对称图形,故本选项符合题意;③不是中心对称图形,故本选项不合题意;④是中心对称图形,故本选项符合题意;故选:D.【点睛】本题考查了中心对称图形的定义,熟悉掌握概念是解题的关键12、B【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【详解】∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,∴S阴影=S△CGE+S△BGF=1.故选:B.【点睛】此题主要考查根据三角形中线性质求解面积,熟练掌握,即可解题.二、填空题(每题4分,共24分)13、【分析】作高线DE,利用勾股定理求出AD,AB的值,然后证明,求DE的长,再利用三角函数定义求解即可.【详解】过点D作于E∵点是边的中点,∴,在中,由∴∴由勾股定理得∵∴∵∴∴∴∴∴故答案为:.【点睛】本题考查了三角函数的问题,掌握勾股定理和锐角三角函数的定义是解题的关键.14、2.【解析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【详解】∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣2),∴当y=0时,0=(x﹣3)(x﹣2),解得:x2=3,x2=2.∵3﹣2=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.故答案为:2.【点睛】本题考查了抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.15、3【解析】试题分析:设最大利润为w元,则w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴当x=3时,二次函数有最大值3,故答案为3.考点:3.二次函数的应用;3.销售问题.16、【分析】根据题意,微信的顺序是任意的,微信给甲、乙、丙三人的概率都相等均为.【详解】∵微信的顺序是任意的,∴微信给甲、乙、丙三人的概率都相等,∴第一个微信给甲的概率为.故答案为.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17、【解析】要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:,底面周长,将圆锥侧面沿剪开展平得一扇形,此扇形的半径,弧长等于圆锥底面圆的周长设扇形圆心角度数为,则根据弧长公式得:,,即展开图是一个半圆,点是展开图弧的中点,,连接,则就是蚂蚁爬行的最短距离,在中由勾股定理得,,,即蚂蚁爬行的最短距离是.故答案为:.【点睛】考查了平面展开最短路径问题,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决.18、-1【详解】设一元二次方程x2+2x+a=0的一个根x1=1,另一根为x2,则,x1+x2=-=-2,解得,x2=-1.故答案为-1.三、解答题(共78分)19、(1);(2);(3)存在,或【分析】(1)过点作轴于点,利用三角函数值可得出,再根据翻折的性质可得出,,再解,得出,,最后结合点C的坐标即可得出答案;(2)设点坐标为(),则点的坐标是,利用(1)得出的结果作为已知条件,可得出点D的坐标为,再结合反比例函数求解即可;(3)首先存在这样的k值,分和两种情况讨论分析即可.【详解】解:(1)如图,过点作轴于点∵,∴∴由题意可知,.∴.∴在中,,∴,.∵点坐标为,∴.∴点的坐标是(2)设点坐标为(),则点的坐标是,由(1)可知:点的坐标是∵点和点在同一个反比例函数的图象上,∴.解得.∴点坐标为(3)存在这样的,使得以点,,为顶点的三角形是直角三角形解:①当时.如图所示,连接,,,与相交于点.则,,.∴∽∴∴又∵,∴∽.∴,,∴.∴,设(),则,∵,在同一反比例函数图象上,∴.解得:.∴∴②当时.如图所示,连接,,,∵,∴.在中,∵,,∴.在中,∵,∴.∴设(),则∵,在同一反比例函数图象上,∴.解得:,∴∴【点睛】本题是一道关于反比例函数的综合题目,具有一定的难度,涉及到的知识点有特殊角的三角函数值,翻折的性质,相似三角形的判定定理以及性质,反比例函数的性质等,充分考查了学生综合分析问题的能力.20、(1)100、35;(2)补图见解析;(3)800人;(4)【解析】分析:(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比可得答案;(4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得.详解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=×100%=35%,即n=35,(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人;(4)列表如下:共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为.点睛:本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21、(1);(2)6,,2,【分析】(1)矩形的宽=矩形面积÷矩形的长,设出关系式,由于(1,4)满足,故可求得k的值;

(2)根据(1)中所求的式子作答.【详解】解(1)设,由于在此函数解析式上,那么.∴(2)128642【点睛】本题考查了列函数关系式表式实际问题,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.在此函数上的点一定适合这个函数解析式.22、(1)60;(2).【分析】(1)作等腰三角形底边上的高AH并根据勾股定理求出,再根据三角形面积公式即可求解;(2)方法一:作等腰三角形底边上的高AH并根据勾股定理求出,与BD交点为E,则E是三角形的重心,再根据三角形重心的性质求出EH,∠DBC的正切值即可求出.方法二:过点A、D分别作AH⊥BC、DF⊥BC,垂足分别为点H、F,先根据勾股定理求出AH的长,再根据三角形中位线定理求出DF的长,BF的长就等于BC的,∠DBC的正切值即可求出.【详解】解:(1)过点A作AH⊥BC,垂足为点H,交BD于点E.∵AB=AC=13,AH⊥BC,BC=10∴BH=5在Rt△ABH中,AH==12,∴△ABC的面积=;(2)方法一:过点A作AH⊥BC,垂足为点H,交BD于点E.∵AB=AC=13,AH⊥BC,BC=10∴BH=5在Rt△ABH中,AH==12∵BD是AC边上的中线所以点E是△ABC的重心∴EH==4,∴在Rt△EBH中,tan∠DBC==.方法二:过点A、D分别作AH⊥BC、DF⊥BC,垂足分别为点H、F.∵AB=AC=13,AH⊥BC,BC=10∴BH=CH=5在Rt△ABH中,AH==12∵AH⊥BC、DF⊥BC∴AH∥DF,D为AC中点,∴DF=AH=6,∴BF=∴在Rt△DBF中,tan∠DBC==.【点睛】本题主要考查解直角三角形,掌握勾股定理及锐角三角函数的定义是解题的关键.23、(1);(2)【分析】(1)由题意利用乘方运算法则并代入特殊三角函数值进行计算即可;(2)根据题意直接利用因式分解法进行方程的求解即可.【详解】解:(1)(2),解得.【点睛】本题考查实数的混合运算以及解一元二次方程,熟练掌握乘方运算法则和特殊三角函数值以及利用因式分解法解方程是解题的关键.24、(1)(10+5)cm;(1)50πcm1.【分析】(1)连接BC,首先证明BC是直径,求出AB,AC,利用弧长公式求出弧BC的长即可解决问题.(1)根据S阴=S圆O﹣S扇形ABC计算即可解决问题.【详解】解:(1)如图,连接BC∵∠BAC=90°,∴BC是⊙O的直径,∴B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论