版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,AD是半圆的直径,点C是弧BD的中点,∠BAD=70°,则∠ADC等于()A.50° B.55° C.65° D.70°2.关于的方程是一元二次方程,则的取值范围是()A. B. C. D.3.设m是方程的一个较大的根,n是方程的一个较小的根,则的值是()A. B. C.1 D.24.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子.在点钉在一起.并使它们保持垂直,在测直径时,把点靠在圆周上.读得刻度个单位,个单位,则圆的直径为()A.12个单位 B.10个单位 C.11个单位 D.13个单位5.根据下面表格中的对应值:x3.243.253.26ax2+bx+c﹣0.020.010.03判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是()A.x<3.24 B.3.24<x<3.25 C.3.25<x<3.26 D.x>3.266.小明使用电脑软件探究函数的图象,他输入了一组,的值,得到了下面的函数图象,由学习函数的经验,可以推断出小明输入的,的值满足()A., B., C., D.,7.在Rt△ABC中,∠C=90°,sinA=,则∠A的度数是()A.30° B.45° C.60° D.90°8.下列关于x的方程是一元二次方程的有()①ax2+bx+c=0②x2=0③④A.②和③ B.①和② C.③和④ D.①和④9.已知两个相似三角形的相似比为4:9,则这两个三角形的对应高的比为()A. B. C. D.10.已知关于x的方程x2+ax﹣6=0的一个根是2,则a的值是()A.﹣1 B.0 C.1 D.2二、填空题(每小题3分,共24分)11.已知,若是一元二次方程的两个实数根,则的值是___________.12.将抛物线y=﹣x2向右平移1个单位,再向上平移2个单位后,得到的抛物线的解析式为______.13.把一元二次方程x(x+1)=4(x﹣1)+2化为一般形式为_____.14.建国70周年大阅兵时,以“同心共筑中国梦”为主题的群众游行队伍某表演方阵有8行12列,后又增加了429人,使得增加的行数和列数相同.请你计算增加了多少行.若设增加了x行,由题意可列方程为_______________________.15.二次函数解析式为,当x>1时,y随x增大而增大,求m的取值范围__________16.关于x的一元二次方程有两个不相等的实数根,则实数a的取值范围是______.17.二次函数的图象与轴交于两点(点在点的左侧),与轴交于点,作直线,将直线下方的二次函数图象沿直线向上翻折,与其它剩余部分组成一个组合图象,若线段与组合图象有两个交点,则的取值范围为_____.18.二次函数的图像经过原点,则a的值是______.三、解答题(共66分)19.(10分)如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.(1)求EG:BG的值;(2)求证:AG=OG;(3)设AG=a,GH=b,HO=c,求a:b:c的值.20.(6分)如图,在某一路段,规定汽车限速行驶,交通警察在此限速路段的道路上设置了监测区,其中点C、D为监测点,已知点C、D、B在同一直线上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°(1)求道路AB段的长(结果精确到1米)(2)如果道路AB的限速为60千米/时,一辆汽车通过AB段的时间为90秒,请你判断该车是否是超速,并说明理由;参考数据:sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.700221.(6分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.22.(8分)如图,已知是边长为的等边三角形,动点、同时从、两点出发,分别沿、方向匀速移动,它们的移动速度都是,当点到达点时,、两点停止运动,设点的运动时间的秒,解答下列问题.(1)时,求的面积;(2)若是直角三角形,求的值;(3)用表示的面积并判断能否成立,若能成立,求的值,若不能成立,说明理由.23.(8分)用适当的方法解下列方程:(1)(2)24.(8分)计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°25.(10分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.(1)求与之间的函数关系式,并写出自变量的取值范围;(2)求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?26.(10分)已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如下表:(1)求该二次函数的表达式;(2)该二次函数图像关于x轴对称的图像所对应的函数表达式;
参考答案一、选择题(每小题3分,共30分)1、B【解析】连接BD,根据直径所对的圆周角为直角可得∠ABD=90°,即可求得∠ADB=20°,再由圆内接四边形的对角互补可得∠C=110°,因,即可得BC=DC,根据等腰三角形的性质及三角形的内角和定理可得∠BDC=∠DBC=35°,由此即可得∠ADC=∠ADB+∠BDC=55°.【详解】解:连接BD,∵AD是半圆O的直径,∴∠ABD=90°,∵∠BAD=70°,∴∠C=110°,∠ADB=20°,∵,∴BC=DC,∴∠BDC=∠DBC=35°,∴∠ADC=∠ADB+∠BDC=55°.故选B.【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、等腰三角形的性质及三角形的内角和定理等知识,熟练运用相关知识是解决问题的关键.2、A【解析】根据一元二次方程的定义判断即可.【详解】∵是关于x的一元二次方程,
∴,
故选:A.【点睛】此题主要考查了一元二次方程定义,熟练掌握一元二次方程的定义是解本题的关键.3、C【分析】先解一元二次方程求出m,n即可得出答案.【详解】解方程得或,则,解方程,得或,则,,故选:C.【点睛】本题考查了解一元二次方程,掌握方程解法是解题关键.4、B【分析】根据圆中的有关性质“90°的圆周角所对的弦是直径”.判断EF即为直径,然后根据勾股定理计算即可.【详解】解:连接EF,
∵OE⊥OF,
∴EF是圆的直径,.故选:B.【点睛】本题考查圆周角的性质定理,勾股定理.掌握“90°的圆周角所对的弦是直径”定理的应用是解决此题的关键.5、B【解析】根据表中数据可得出ax2+bx+c=0的值在-0.02和0.01之间,再看对应的x的值即可得.【详解】∵x=3.24时,ax2+bx+c=﹣0.02;x=3.1时,ax2+bx+c=0.01,∴关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是3.24<x<3.1.故选:B.【点睛】本题考查了估算一元二次方程的近似解:用列举法估算一元二次方程的近似解,具体方法是:给出一些未知数的值,计算方程两边结果,当两边结果愈接近时,说明未知数的值愈接近方程的根.6、D【分析】由图象可知,当x>0时,y<0,可知a<0;图象的左侧可以看作是反比例函数图象平移得到,由图可知向左平移,则b<0;【详解】由图象可知,当x>0时,y<0,∴a<0;∵图象的左侧可以看作是反比例函数图象平移得到,由图可知向左平移,∴b<0;故选:D.【点睛】本题考查函数的图象;能够通过已学的反比例函数图象确定b的取值是解题的关键.7、C【解析】试题分析:根据特殊角的三角函数值可得:∠A=60°.8、A【解析】根据一元二次方程的定义进行解答即可.【详解】①ax2+bx+c=0,当a=0时,该方程不是一元二次方程;②x2=0符合一元二次方程的定义;③符合一元二次方程的定义;④是分式方程.综上所述,其中一元二次方程的是②和③.故选A.【点睛】本题考查了一元二次方程的定义,利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.9、B【分析】根据相似三角形的性质即可得出答案.【详解】根据“相似三角形对应高的比等于相似比”可得对应高的比为4:9,故答案选择B.【点睛】本题考查相似三角形的性质,相似三角形对应边、对应高、对应中线以及周长比都等于相似比.10、C【解析】一元二次方程的根就是能够使方程左右两边相等的未知数的值.利用方程解的定义将x=2代入方程式即可求解.【详解】解:将x=2代入x2+ax﹣6=2,得22+2a﹣6=2.解得a=2.故选C.【点睛】本题考查的是一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题.二、填空题(每小题3分,共24分)11、6【解析】根据得到a-b=1,由是一元二次方程的两个实数根结合完全平方公式得到,根据根与系数关系得到关于k的方程即可求解.【详解】∵,故a-b=1∵是一元二次方程的两个实数根,∴a+b=-5,ab=k,∴=1即25-4k=1,解得k=6,故填:6.【点睛】此题主要考查一元二次方程的应用,解题的关键是熟知因式分解、根与系数的关系运用.12、y=﹣(x﹣1)1+1【分析】根据二次函数图象的平移规律:左加右减,上加下减,可得答案.【详解】将抛物线y=﹣x1向右平移1个单位,再向上平移1个单位后,得到的抛物线的解析式为y=﹣(x﹣1)1+1.故答案是:y=﹣(x﹣1)1+1.【点睛】本题考查了二次函数图象与几何变换,利用函数图象的平移规律:左加右减,上加下减是解题关键.13、x2﹣3x+2=1.【分析】按照去括号、移项、合并同类项的步骤化为ax2+bx+c=1的形式即可.【详解】x2+x=4x﹣4+2,x2﹣3x+2=1.故答案为:x2﹣3x+2=1.【点睛】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=1(a≠1).其中a是二次项系数,b是一次项系数,c是常数项.14、【分析】根据增加后的总人数减去已有人数等于429这一等量关系列出方程即可.【详解】设增加了x行,则增加的列数也为x,由题意可得,.【点睛】本题考查了由实际问题列一元二次方程,根据题意找出等量关系是解题关键.15、m≤1【分析】先确定图像的对称轴x=,当x>1时,y随x增大而增大,则≤1,然后列不等式并解答即可.【详解】解:∵∴对称轴为x=∵当x>1时,y随x增大而增大∴≤1即m≤1故答案为m≤1.【点睛】本题考查二次函数的增减性,正确掌握二次函数得性质和解一元一次不等式方程是解答本题的关键.16、且【解析】由关于x的一元二次方程有两个不相等的实数根,即可得判别式,继而可求得a的范围.【详解】关于x的一元二次方程有两个不相等的实数根,,解得:,方程是一元二次方程,,的范围是:且,故答案为:且.【点睛】本题考查了一元二次方程判别式以及一元二次方程的定义,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.17、或【解析】画出图形,采用数形结合,分类讨论讨论,分直线y=t在x轴上方和下方两种情况,需要注意的是,原抛物线与线段BC本来就有B、C两个交点.具体过程见详解.【详解】解:分类讨论(一):原抛物线与线段BC就有两个交点B、C.当抛物线在x轴下方部分,以x轴为对称轴向上翻折后,就会又多一个交点,所以要满足只有两个交点,直线y=t需向上平移,点B不再是交点,交点只有点C和点B、C之间的一个点,所以t>0;当以直线y=3为对称轴向上翻折时,线段与组合图象就只有点C一个交点了,不符合题意,所以t<3,故;(二)∵=(x-2)2-1,∴抛物线沿翻折后的部分是抛物线)2+k在直线y=t的上方部分,当直线BC:y=-x+3与抛物线只有一个交点时,即的△=0,解得k=,此时线段BC与组合图象W的交点,既有C、B,又多一个,共三个,不符合题意,所以翻折部分需向下平移,即直线y=t向下平移,k=时,抛物线)2+的顶点坐标为(2,),与的顶点(2,-1)的中点是(2,-),所以t<-,又因为,所以.综上所述:t的取值范围是:或故答案为或.【点睛】本题考查抛物线的翻折和上下平移、抛物线和线段的交点问题.解题关键是熟练掌握二次函数的图像和性质.18、1【分析】根据题意将(0,0)代入二次函数,即可得出a的值.【详解】解:∵二次函数的图象经过原点,∴=0,∴a=±1,∵a+1≠0,∴a≠-1,∴a的值为1.故答案为:1.【点睛】本题考查二次函数图象上点的特征,图象过原点,可得出x=0,y=0,从而分析求值.三、解答题(共66分)19、(1)1:3;(1)见解析;(3)5:3:1.【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根据相似三角形的性质,即可求出EG:BG的值;(1)根据相似三角形的性质可得GC=3AG,则有AC=4AG,从而可得AO=AC=1AG,即可得到GO=AO﹣AG=AG;(3)根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.【详解】(1)∵四边形ABCD是平行四边形,∴AO=AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴.∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3;(1)∵GC=3AG(已证),∴AC=4AG,∴AO=AC=1AG,∴GO=AO﹣AG=AG;(3)∵AE=EF=FD,∴BC=AD=3AE,AF=1AE.∵AD∥BC,∴△AFH∽△CBH,∴,∴=,即AH=AC.∵AC=4AG,∴a=AG=AC,b=AH﹣AG=AC﹣AC=AC,c=AO﹣AH=AC﹣AC=AC,∴a:b:c=::=5:3:1.20、(1)1395米;(2)超速,理由见解析;【分析】(1)根据锐角三角函数的定义即可求出答案.(2)求出汽车的实际车速即可判断.【详解】解:(1)在Rt△ACD中,AC=CD•tan∠ADC=400×2=800,在Rt△ABC中,AB==≈1395(米);(2)车速为:≈15.5m/s=55.8km/h<60km/h,∴该汽车没有超速.【点睛】本题考查解直角三角形的应用,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.21、(1);(2).【解析】试题分析:(1)直接列举出两次传球的所有结果,球球恰在B手中的结果只有一种即可求概率;(2)画出树状图,表示出三次传球的所有结果,三次传球后,球恰在A手中的结果有2种,即可求出三次传球后,球恰在A手中的概率.试题解析:解:(1)两次传球的所有结果有4种,分别是A→B→C,A→B→A,A→C→B,A→C→A.每种结果发生的可能性相等,球球恰在B手中的结果只有一种,所以两次传球后,球恰在B手中的概率是;(2)树状图如下,由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等.其中,三次传球后,球恰在A手中的结果有A→B→C→A,A→C→B→A这两种,所以三次传球后,球恰在A手中的概率是.考点:用列举法求概率.22、(1);(2)或;(3)不能成立,理由见解析【分析】(1)根据题意利用等边三角形的性质,结合解直角三角形进行分析计算即可;(2)由题意分当时以及当两种情况,建立方程并分别求出t值即可;(3)根据题意用表示的面积,并利用解直角三角形的知识求出,根据得到方程,进而判断t值是否存在即可.【详解】解:(1)当时,由题意可知,∵是边长为的等边三角形,∴,∴是等边三角形,所以.(2)①当时,,,,,由得.②当,,,,,∴,得,解得:当或时,是直角三角形.(3),,∴,∴,由即得,,即t值无解,不能成立.【点睛】本题考查等边三角形相关的动点问题,熟练掌握等边三角形的性质结合一元二次方程和特殊三角函数值以及运用化形为数的思维进行分析是解题的关键.23、(1),;(2),【分析】(1)移项,两边同时加1,开方,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1),.(2),,.【点睛】本题考查了解一元二次方程,有直接开平方法、配方法、公式法、因式分解法,仔细观察运用合适的方法能简便计算.24、(1);(2)2.【解析】根据特殊角的锐角三角函数的值即可求出答案.【详解】(1)原式=()2﹣×+1=﹣+1=,(2)原式=(cos²45°+sin²45°)+(sin²54°+cos²54°)=1+1=2【点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025一般货物进口合同
- “十三五”重点项目-对甲苯磺酰甲基异腈项目节能评估报告(节能专)
- 2024-2025年中国网上支付行业市场前景预测及投资战略研究报告
- 2025标准土地抵押合同
- 中国打印服务管理行业市场调研及投资战略研究报告
- 2025集资房买卖的合同范本
- 2025陆水湖主体建设主体工程施工合同补充协议
- 2025办公室装修协议书合同范本
- 2025承包经营的合同协议书
- 2025上海户外场地租赁合同
- 中华人民共和国精神卫生法课件
- 2004式警车外观制式涂装规范
- 长距离输气管线工艺设计方案
- 《销售管理实务》ppt课件汇总(完整版)
- 房屋无偿使用协议书(8篇)
- 中央银行理论与实务期末复习题
- 国家开放大学电大本科《国际私法》案例题题库及答案(b试卷号:1020)
- 喜庆中国节春节习俗文化PPT模板
- 测井仪器设计规范--电子设计
- 用特征方程求数列的通项
- 素材库管理系统架构(共13页)
评论
0/150
提交评论