2023届四川省成都市泡桐树中学数学九年级第一学期期末学业质量监测模拟试题含解析_第1页
2023届四川省成都市泡桐树中学数学九年级第一学期期末学业质量监测模拟试题含解析_第2页
2023届四川省成都市泡桐树中学数学九年级第一学期期末学业质量监测模拟试题含解析_第3页
2023届四川省成都市泡桐树中学数学九年级第一学期期末学业质量监测模拟试题含解析_第4页
2023届四川省成都市泡桐树中学数学九年级第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.一张圆形纸片,小芳进行了如下连续操作:将圆形纸片左右对折,折痕为AB,如图.将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图.将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图.连结AE、AF、BE、BF,如图.经过以上操作,小芳得到了以下结论:;四边形MEBF是菱形;为等边三角形;::.以上结论正确的有A.1个 B.2个 C.3个 D.4个2.定义新运算:,例如:,,则y=2⊕x(x≠0)的图象是()A. B. C. D.3.如图,已知是的外接圆,是的直径,是的弦,,则等于()A. B. C. D.4.下列方程是一元二次方程的是()A.2x2-5x+3 B.2x2-y+1=0 C.x2=0 D.+x=25.在同一直角坐标系中,函数y=和y=kx﹣3的图象大致是()A. B. C. D.6.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.某公司一月份缴税40万元,由于公司的业绩逐月稳步上升,假设每月的缴税增长率相同,第一季度共缴税145.6万元,该公司这季度缴税的月平均增长率为多少?设公司这季度缴税的月平均增长率为x,则下列所列方程正确的是()A. B.C. D.8.如图图形中,是轴对称图形又是中心对称图形的是()A. B.C. D.9.二次函数的图象如图,则一次函数的图象经过()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限10.已知函数的图像上两点,,其中,则与的大小关系为()A. B. C. D.无法判断11.如图,水平地面上有一面积为30cm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面.将这个扇形向右滚动(无滑动)至点B刚好接触地面为止,则在这个滚动过程中,点O移动的距离是()A.cm B.cm C.cm D.30cm12.已知⊙O的半径为4cm.若点P到圆心O的距离为3cm,则点P()A.在⊙O内 B.在⊙O上C.在⊙O外 D.与⊙O的位置关系无法确定二、填空题(每题4分,共24分)13.如图,的弦,半径交于点,是的中点,且,则的长为__________.14.分解因式:x3-4x15.在△ABC中,∠C=90°,cosA=,则tanA等于.16.如图,小明同学用自制的直角三角形纸板DEF测量树AB的高度,他调整自己的位置,使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=10m,则AB=_____m.17.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半轴上,反比例函数y=(x>0)的图象经过该菱形对角线的交点A,且与边BC交于点F.若点D的坐标为(3,4),则点F的坐标是_____.18.在一个不透明的盒子中装有6个白球,x个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到白球的概率为,则x=_______.三、解答题(共78分)19.(8分)如图,四边形内接于,是的直径,点在的延长线上,延长交的延长线于点,点是的中点,.(1)求证:是的切线;(2)求证:是等腰三角形;(3)若,,求的值及的长.20.(8分)如图,在△ABC中,∠ACB=90°,D为AC的中点,DE⊥AB于点E,AC=8,AB=1.求AE的长.21.(8分)在平面直角坐标系xOy中,⊙O的半径为r(r>0).给出如下定义:若平面上一点P到圆心O的距离d,满足,则称点P为⊙O的“随心点”.(1)当⊙O的半径r=2时,A(3,0),B(0,4),C(,2),D(,)中,⊙O的“随心点”是;(2)若点E(4,3)是⊙O的“随心点”,求⊙O的半径r的取值范围;(3)当⊙O的半径r=2时,直线y=-x+b(b≠0)与x轴交于点M,与y轴交于点N,若线段MN上存在⊙O的“随心点”,直接写出b的取值范围.22.(10分)为加强我市创建文明卫生城市宣传力度,需要在甲楼A处到E处悬挂一幅宣传条幅,在乙楼顶部D点测得条幅顶端A点的仰角∠ADF=45°,条幅底端E点的俯角为∠FDE=30°,DF⊥AB,若甲、乙两楼的水平距离BC为21米,求条幅的长AE约是多少米?(,结果精确到0.1米)23.(10分)如图,已知AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,∠BCP=∠A.(1)求证:直线PC是⊙O的切线;(2)若CA=CP,⊙O的半径为2,求CP的长.24.(10分)解下列方程(1)2x(x﹣2)=1(2)2(x+3)2=x2﹣925.(12分)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出块这样的木条.26.小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据折叠的性质可得∠BMD=∠BNF=90°,然后利用同位角相等,两直线平行可得CD∥EF,从而判定①正确;根据垂径定理可得BM垂直平分EF,再求出BN=MN,从而得到BM、EF互相垂直平分,然后根据对角线互相垂直平分的四边形是菱形求出四边形MEBF是菱形,从而得到②正确;根据直角三角形角所对的直角边等于斜边的一半求出∠MEN=30°,然后求出∠EMN=60°,根据等边对等角求出∠AEM=∠EAM,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠AEM=30°,从而得到∠AEF=60°,同理求出∠AFE=60°,再根据三角形的内角和等于180°求出∠EAF=60°,从而判定△AEF是等边三角形,③正确;设圆的半径为r,求出EN=,则可得EF=2EN=,即可得S四边形AEBF:S扇形BEMF的答案,所以④正确.【详解】解:∵纸片上下折叠A、B两点重合,∴∠BMD=90°,∵纸片沿EF折叠,B、M两点重合,∴∠BNF=90°,∴∠BMD=∠BNF=90°,∴CD∥EF,故①正确;根据垂径定理,BM垂直平分EF,又∵纸片沿EF折叠,B、M两点重合,∴BN=MN,∴BM、EF互相垂直平分,∴四边形MEBF是菱形,故②正确;∵ME=MB=2MN,∴∠MEN=30°,∴∠EMN=90°-30°=60°,又∵AM=ME(都是半径),∴∠AEM=∠EAM,∴∠AEM=∠EMN=×60°=30°,∴∠AEF=∠AEM+∠MEN=30°+30°=60°,同理可求∠AFE=60°,∴∠EAF=60°,∴△AEF是等边三角形,故③正确;设圆的半径为r,则EN=,∴EF=2EN=,∴S四边形AEBF:S扇形BEMF=故④正确,综上所述,结论正确的是①②③④共4个.故选:D.【点睛】本题圆的综合题型,主要考查了翻折变换的性质,平行线的判定,对角线互相垂直平分的四边形是菱形,等边三角形的判定与性质.注意掌握折叠前后图形的对应关系是关键.2、D【分析】根据题目中的新定义,可以写出y=2⊕x函数解析式,从而可以得到相应的函数图象,本题得以解决.【详解】解:由新定义得:,根据反比例函数的图像可知,图像为D.故选D.【点睛】本题考查函数的图象,解答本题的关键是明确题意,利用新定义写出正确的函数解析式,再根据函数的解析式确定答案,本题列出来的是反比例函数,所以掌握反比例函数的图像是关键.3、C【分析】由直径所对的圆周角是直角,可得∠ADB=90°,可计算出∠BAD,再由同弧所对的圆周角相等得∠BCD=∠BAD.【详解】∵是的直径∴∠ADB=90°∴∠BAD=90°-∠ABD=32°∴∠BCD=∠BAD=32°.故选C.【点睛】本题考查圆周角定理,熟练运用该定理将角度进行转换是关键.4、C【解析】一元二次方程必须满足四个条件:(1)未知数的最高次数是1;(1)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A、不是方程,故本选项错误;B、方程含有两个未知数,故本选项错误;C、符合一元二次方程的定义,故本选项正确;D、不是整式方程,故本选项错误.故选:C.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.5、B【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论;当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】解:分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,观察只有B选项符合,故选B.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,熟练掌握它们的性质才能灵活解题.6、C【分析】根据轴对称,中心对称的概念逐一判断即可.【详解】解:A、该图形为轴对称图形,但不是中心对称图形,故A错误;B、该图形为中心对称图形,但不是轴对称图形,故B错误;C、该图形既是轴对称图形,又是中心对称图形,故C正确;D、该图形为轴对称图形,但不是中心对称图形,故D错误;故答案为C.【点睛】本题考查了轴对称,中心对称图形的识别,掌握轴对称,中心对称的概念是解题的关键.7、D【分析】根据题意,第二月获得利润万元,第三月获得利润万元,根据第一季度共获利145.6万元,即可得出关于的一元二次方程,此题得解.【详解】设二、三月份利润的月增长率为,则第二月获得利润万元,第三月获得利润万元,

依题意,得:.

故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.求平均变化率的方法为:若变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.8、D【解析】试题解析:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转后它的两部分能够重合;即不满足中心对称图形的定义,故此选项不合题意;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转后它的两部分能够重合;即不满足中心对称图形的定义,故此选项不合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形,故此选项不合题意;D、是轴对称图形,又是中心对称图形,故此选项符合题意;故选D.9、C【解析】∵抛物线的顶点在第四象限,∴﹣>1,<1.∴<1,∴一次函数的图象经过二、三、四象限.故选C.10、B【分析】由二次函数可知,此函数的对称轴为x=2,二次项系数a=−1<0,故此函数的图象开口向下,有最大值;函数图象上的点与坐标轴越接近,则函数值越大,故可求解.【详解】函数的对称轴为x=2,二次函数开口向下,有最大值,∵,A到对称轴x=2的距离比B点到对称轴的距离远,∴故选:B.【点睛】本题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数y=ax2+bx+c(a≠0)的图象性质.11、A【解析】如下图,在灰色扇形OAB向右无滑动滚动过程中,点O移动的距离等于线段A1B1的长度,而A1B1的长度等于灰色扇形OAB中弧的长度,∵S扇形=,OA=6,∴(cm),即点O移动的距离等于:cm.故选A.点睛:在扇形沿直线无滑动滚动的过程中,由于圆心到圆上各点的距离都等于半径,所以此时圆心作的是平移运动,其平移的距离就等于扇形沿直线滚动的路程.12、A【分析】根据点与圆的位置关系判断即可.【详解】∵点P到圆心的距离为3cm,而⊙O的半径为4cm,∴点P到圆心的距离小于圆的半径,∴点P在圆内,故选:A.【点睛】此题考查的是点与圆的位置关系,掌握点与圆的位置关系的判断方法是解决此题的关键.二、填空题(每题4分,共24分)13、2【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径交于点,是的中点,∴AM=BM==4,∠AMO=90°,∴在Rt△AMO中OA==5.∵ON=OA,∴MN=ON-OM=5-3=2.故答案为2.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.14、x(x-2y)2【分析】首先提取公因式x,然后利用完全平方公式进行分解.【详解】解:原式=x(x2-4xy+4y2)故答案为:x(x-2y)2【点睛】本题考查因式分解,掌握完全平方公式的结构是本题的解题关键.15、.【解析】试题分析:∵在△ABC中,∠C=90°,cosA=,∴.∴可设.∴根据勾股定理可得.∴.考点:1.锐角三角函数定义;2.勾股定理.16、6.5【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上AC的长即可求得树AB的高.【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DE=40cm=0.4m,EF=20cm=0.2m,CD=10m,∴,解得:BC=5(m),∵AC=1.5m,∴AB=AC+BC=1.5+5=6.5(m),故答案为:6.5【点睛】本题考查相似三角形的应用,如果两个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.17、(6,).【分析】过点D作DM⊥OB,垂足为M,先根据勾股定理求出菱形的边长,即可得到点B、D的坐标,进而可根据菱形的性质求得点A的坐标,进一步即可求出反比例函数的解析式,再利用待定系数法求出直线BC的解析式,然后解由直线BC和反比例函数的解析式组成的方程组即可求出答案.【详解】解:过点D作DM⊥OB,垂足为M,∵D(3,4),∴OM=3,DM=4,∴OD==5,∵四边形OBCD是菱形,∴OB=BC=CD=OD=5,∴B(5,0),C(8,4),∵A是菱形OBCD的对角线交点,∴A(4,2),代入y=,得:k=8,∴反比例函数的关系式为:y=,设直线BC的关系式为y=kx+b,将B(5,0),C(8,4)代入得:,解得:k=,b=﹣,∴直线BC的关系式为y=x﹣,将反比例函数与直线BC联立方程组得:,解得:,(舍去),∴F(6,),故答案为:(6,).【点睛】本题考查了菱形的性质、勾股定理、待定系数法求函数的解析式以及求两个函数的交点等知识,属于常考题型,正确作出辅助线、熟练掌握上述知识是解题的关键.18、1【分析】直接以概率求法得出关于x的等式进而得出答案.【详解】解:由题意得:,解得,故答案为:1.【点睛】本题考查了概率的意义,正确把握概率的求解公式是解题的关键.三、解答题(共78分)19、(1)见解析;(2)见解析;(3),【分析】(1)根据圆的切线的定义来证明,证∠OCD=90°即可;(2)根据全等三角形的性质和四边形的内接圆的外角性质来证;(3)根据已知条件先证△CDB∽△ADC,由相似三角形的对应边成比例,求CB的值,然后求求的值;连结BE,在Rt△FEB和Rt△AEB中,利用勾股定理来求EF即可.【详解】解:(1)如图1,连结,是的直径,,又点是的中点,.,又是的切线图1(2)四边形内接于,.,即是等腰三角形(3)如图2,连结,设,,在中,,由(1)可知,又,在中,,,是的直径,,即解得图2【点睛】本题考查了圆的切线、相似三角形的性质、勾股定理的应用,解本题关键是找对应的线段长.20、.【分析】求出AD的长,根据△ADE∽△ABC,可得,则可求出AE的长.【详解】解:∵AC=8,D为AC的中点,∴AD=4,∵DE⊥AB,∴∠AED=90°,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴,∴,∴AE=.【点睛】本题考查的知识点是相似三角形判定及其性质,熟记定理和性质是解题的关键.21、(1)A,C;(2);(3)1≤b≤或-≤b≤-1.【分析】(1)根据已知条件求出d的范围:1≤d≤3,再将各点距离O点的距离,进行判断是否在此范围内即可,满足条件的即为随心点;(2)根据点E(4,3)是⊙O的“随心点”,可根据,求出d=5,再求出r的范围即可;(3)如图a∥b∥c∥d,⊙O的半径r=2,求出随心点范围,再分情况点N在y轴正半轴时,当点N在y轴负半轴时,分情况讨论即可.【详解】(1)∵⊙O的半径r=2,

∴=3,=1∴1≤d≤3∵A(3,0),

∴OA=3,在范围内

∴点A是⊙O的“随心点”∵B(0,4)∴OB=4,而4>3,不在范围内∴B是不是⊙O的“随心点”,

∵C(,2),

∴OC=,在范围内

∴点C是⊙O的“随心点”,

∵D(,),

∴OD=<1,不在范围内

∴点D不是⊙O的“随心点”,

故答案为:A,C(2)∵点E(4,3)是⊙O的“随心点”∴OE=5,即d=5若,∴r=10若,∴(3)

∵如图a∥b∥c∥d,⊙O的半径r=2,随心点范围∴∵直线MN的解析式为y=x+b,

∴OM=ON,

①点N在y轴正半轴时,

当点M是⊙O的“随心点”,此时,点M(-1,0),

将M(-1,0)代入直线MN的解析式y=x+b中,解得,b=1,

即:b的最小值为1,

过点O作OG⊥M'N'于G,

当点G是⊙O的“随心点”时,此时OG=3,

在Rt△ON'G中,∠ON'G=45°,

∴GO=3∴在Rt△GNN’中,===,

b的最大值为,

∴1≤b≤,

②当点N在y轴负半轴时,同①的方法得出-≤b≤-1.

综上所述,b的取值范围是:1≤b≤或-≤b≤-1.【点睛】此题考查了一次函数的综合题,主要考查了新定义,点到原点的距离的确定,解(3)的关键是找出线段MN上的点是圆O的“随心点”的分界点,是一道中等难度的题目.22、33.1米【分析】根据题意及解直角三角形的应用直接列式求解即可.【详解】解:过点D作DF⊥AB,如图所示:在Rt△ADF中,DF=BC=21米,∠ADF=45°∴AF=DF=21米在Rt△EDF中,DF=21米,∠EDF=30°∴EF=DF×tan30°=米∴AE=AF+BF=+21≈33.1米.答:条幅的长AE约是33.1米.【点睛】本题主要考查解直角三角形的应用,关键是根据题意及利用三角函数求出线段的长.23、(1)见解析;(2)2【分析】(1)欲证明PC是⊙O的切线,只要证明OC⊥PC即可;(2)想办法证明∠P=30°即可解决问题.【详解】(1)∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线;(2)∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论