2023届山西省临汾市忻州师范院附属外国语中学数学九年级第一学期期末统考试题含解析_第1页
2023届山西省临汾市忻州师范院附属外国语中学数学九年级第一学期期末统考试题含解析_第2页
2023届山西省临汾市忻州师范院附属外国语中学数学九年级第一学期期末统考试题含解析_第3页
2023届山西省临汾市忻州师范院附属外国语中学数学九年级第一学期期末统考试题含解析_第4页
2023届山西省临汾市忻州师范院附属外国语中学数学九年级第一学期期末统考试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在△中,,,垂足为,若,,则的值为()A. B.C. D.2.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°.①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是;④四边形ACEB的面积是1.则以上结论正确的是()A.①② B.②④ C.①②③ D.①③④3.若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且.图象上有一点在轴下方,则下列判断正确的是()A. B. C. D.4.某商场将进货价为45元的某种服装以65元售出,平均每天可售30件,为了尽快减少库存,商场决定采取适当的降价措施,调查发现:每件降价1元,则每天可多售5件,如果每天要盈利800元,每件应降价()A.12元 B.10元 C.11元 D.9元5.已知,则下列比例式成立的是()A. B. C. D.6.已知将二次函数y=x²+bx+c的图象向右平移2个单位,再向下平移3个单位,所得图象的解析式为y=x²-4x-5,则b,c的值为()A.b=1,c=6 B.b=1.c=-5 C.b=1.c=-6 D.b=1,c=57.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB8.若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角为()A.30 B.45 C.60 D.909.如图,已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,则函数y的最小值和最大值()A.﹣3和5 B.﹣4和5 C.﹣4和﹣3 D.﹣1和510.在同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图像可能是()A. B. C. D.二、填空题(每小题3分,共24分)11.中,若,,,则的面积为________.12.方程的根是_____.13.已知点与点,两点都在反比例函数的图象上,且<<,那么______________.(填“>”,“=”,“<”)14.如图,平行四边形中,,如果,则___________.15.若如果x:y=3:1,那么x:(x-y)的值为_______.16.如图,平行四边形分别切于点,连接并延长交于点,连接与刚好平行,若,则的直径为______.17.如图,C、D是AB为直径的半圆O上的点,若∠BAD=50°,则∠BCD=_____.18.定义:如果一元二次方程ax2+bx+c=1(a≠1)满足a+b+c=1.那么我们称这个方程为“凤凰”方程,已知ax2+bx+c=1(a≠1)是“凤凰”方程,且有两个相等的实数根,则下列结论:①a=c,②a=b,③b=c,④a=b=c,正确的是_____(填序号).三、解答题(共66分)19.(10分)某校要求九年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解九年级学生参加球类活动的整体情况,现以九年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:九年级2班参加球类活动人数统计表项目篮球足球乒乓球排球羽毛球人数a6486根据图中提供的信息,解答下列问题:(1)a=,b=;(2)该校九年级学生共有600人,则该年级参加足球活动的人数约人;(3)该班参加乒乓球活动的4位同学中,有2位男同学(A,B)和2位女同学(C,D),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.20.(6分)如图,是的直径,切于点,交于点,平分,连接.(1)求证:;(2)若,,求的半径.21.(6分)如图,要设计一幅宽为20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条宽度相等,如果要使余下的图案面积为504cm2,彩条的宽应是多少cm.22.(8分)解方程(1)7x2-49x=0;(2)x2-2x-1=0.23.(8分)(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.24.(8分)如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过B、C两点,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使△EDC的周长最小,求符合条件的E点坐标;(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出PB2的值;若不存在,请说明理由.25.(10分)(1)计算:sin230°+cos245°(2)解方程:x(x+1)=326.(10分)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.

参考答案一、选择题(每小题3分,共30分)1、D【分析】在△中,根据勾股定理可得,而∠B=∠ACD,即可把求转化为求.【详解】在△中,根据勾股定理可得:∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD,∴=.故选D.【点睛】本题考查了了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.2、A【分析】①证明AC∥DE,再由条件CE∥AD,可证明四边形ACED是平行四边形;②根据线段的垂直平分线证明AE=EB,可得△BCE是等腰三角形;③首先利用含30°角的直角三角形计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2;④利用△ACB和△CBE的面积之和,可得四边形ACEB的面积.【详解】解:①∵∠ACB=90°,DE⊥BC,

∴∠ACD=∠CDE=90°,

∴AC∥DE,

∵CE∥AD,

∴四边形ACED是平行四边形,故①正确;

②∵D是BC的中点,DE⊥BC,

∴EC=EB,

∴△BCE是等腰三角形,故②正确;

③∵AC=2,∠ADC=30°,∴AD=4,CD=∵四边形ACED是平行四边形,

∴CE=AD=4,

∵CE=EB,

∴EB=4,DB=∴CB=∴AB=∴四边形ACEB的周长是10+,故③错误;④四边形ACEB的面积:,故④错误,故选:A.【点睛】本题主要考查了平行四边形的判定和性质、等腰三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法.等腰三角形的判定方法,属于中考常考题型.3、D【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.【详解】A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2-4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,则(x0-x1)与(x0-x2)同号,∴a(x0-x1)(x0-x2)<0,综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.4、B【分析】设应降价x元,根据题意列写方程并求解可得答案.【详解】设应降价x元则根据题意,等量方程为:(65-x-45)(30+5x)=800解得:x=4或x=10∵要尽快较少库存,∴x=4舍去故选:B.【点睛】本题考查一元二次方程利润问题的应用,需要注意最后有2个解,需要按照题干要求舍去其中一个解.5、C【分析】依据比例的性质,将各选项变形即可得到正确结论.【详解】解:A.由可得,2y=3x,不合题意;B.由可得,2y=3x,不合题意;C.由可得,3y=2x,符合题意;D.由可得,3x=2y,不合题意;故选:C.【点睛】本题主要考查了比例的性质,解决问题的关键是掌握:内项之积等于外项之积.6、C【分析】首先抛物线平移时不改变a的值,其中点的坐标平移规律是上加下减,左减右加,利用这个规律即可得到所求抛物线的顶点坐标,然后就可以求出抛物线的解析式.【详解】解:∵y=x2-4x-5=x2-4x+4-9=(x-2)2-9,∴顶点坐标为(2,-9),∴由点的平移可知:向左平移2个单位,再向上平移3个单位,得(1,-2),则原二次函数y=ax2+bx+c的顶点坐标为(1,-2),∵平移不改变a的值,∴a=1,∴原二次函数y=ax2+bx+c=x2-2,∴b=1,c=-2.故选:C.【点睛】此题主要考查了二次函数图象与平移变换,首先根据平移规律求出已知抛物线的顶点坐标,然后求出所求抛物线的顶点坐标,最后就可以求出原二次函数的解析式.7、D【解析】解:连接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.8、A【分析】将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的长度与矩形相等的一条边上的高为矩形的一半,即AB=2AE.【详解】解:将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,平行四边形ABCD是原矩形变化而成,∴FG=BC,FH=2AE.又∵HF=AB,∴AB=2AE,在Rt△ABE中,AB=2AE,∠B=30°.故选:A.【点睛】本题考查了矩形各内角为90的性质,平行四边形面积的计算方法,特殊角的三角函数,本题中利用特殊角的正弦函数是解题的关键.9、B【解析】先求出二次函数的对称轴为直线x=-1,然后根据二次函数开口向上确定其增减性,并结合图象解答即可.【详解】∵二次函数y=(x+1)2-4,对称轴是:x=-1∵a=-1>0,∴x>-1时,y随x的增大而增大,x<-1时,y随x的增大而减小,由图象可知:在-2≤x≤2内,x=2时,y有最大值,y=(2+1)2-4=5,x=-1时y有最小值,是-4,故选B.【点睛】本题考查了二次函数的最值问题,二次函数的增减性,结合图象可得函数的最值是解题的关键.10、A【分析】本题可先由一次函数y=ax+1图象得到字母系数的正负,再与二次函数y=x2+a的图象相比较看是否一致.【详解】解:A、由抛物线y轴的交点在y轴的负半轴上可知,a<0,由直线可知,a<0,正确;B、由抛物线与y轴的交点在y轴的正半轴上可知,a>0,二次项系数为负数,与二次函数y=x2+a矛盾,错误;C、由抛物线与y轴的交点在y轴的负半轴上可知,a<0,由直线可知,a>0,错误;D、由直线可知,直线经过(0,1),错误,故选A.【点睛】考核知识点:一次函数和二次函数性质.二、填空题(每小题3分,共24分)11、【分析】过点A作BC边上的高交BC的延长线于点D,在中,利用三角函数求出AD长,再根据三角形面积公式求解即可.【详解】解:如图,作于点D,则,在中,所以的面积为故答案为:.【点睛】本题主要考查了三角函数,灵活添加辅助线利用三角函数求出三角形的高是解题的关键.12、0和-4.【分析】根据因式分解即可求解.【详解】解∴x1=0,x2=-4,故填:0和-4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.13、<【分析】根据反比例函数图象增减性解答即可.【详解】∵反比例函数的图象在每一个象限内y随x的增大而增大∴图象上点与点,且0<<∴<故本题答案为:<.【点睛】本题考查了反比例函数的图象和性质,熟练掌握反比例函数的图象和性质是解题的关键.14、【分析】由平行四边形的性质可知△AEF∽△CDF,再利用条件可求得相似比,利用面积比等于相似比的平方可求得△CDF的面积.【详解】∵四边形ABCD为平行四边形,∴AB∥CD,∴∠EAF=∠DCF,且∠AFE=∠CFD,∴△AEF∽△CDF,∵AE:EB=1:2∴,∴,∵,∴S△CDF=.故答案为:.【点睛】本题主要考查相似三角形的判定和性质,掌握相似三角形的周长比等于相似比、面积比等于相似比的平方是解题的关键.15、【分析】根据x:y=3:1,则可设x=3a,y=a,即可计算x:(x-y)的值.【详解】解:设x=3a,y=a,则x:(x-y)=3a:(3a-a)=,故答案为:.【点睛】本题考查了比的性质,解题的关键是根据已有比例关系,设出x、y的值.16、【分析】先证得四边形AGCH是平行四边形,则,再证得,求得,证得DO⊥HC,根据,即可求得半径,从而求得结论.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,∵AG∥HC,∴四边形AGCH是平行四边形,∴,∵是⊙O的切线,且切点为、,∴,∠GCH=∠HCD,∵AD∥BC,∴∠DHC=∠GCH,∴∠DHC=∠HCD,∴三角形DHC为等腰三角形,∴,∴,∴,,连接OD、OE,如图,∵是⊙O的切线,且切点为、,∴DO是∠FDE的平分线,又∵,∴DO⊥HC,∴∠DOC=90,∵切⊙O于,∴OE⊥CD,∵∠OCE+∠COE=90,∠DOE+∠COE=90,∴∠OCE=∠DOE,∴,∴,即,∴,∴⊙O的直径为:故答案为:.【点睛】本题考查了平行四边形的判定和性质,切线长定理,相似三角形的判定和性质,等腰三角形的判定和性质,证得为等腰三角形是解题的关键.17、130°【分析】根据圆周角定理和圆内接四边形的性质得出∠BAD+∠BCD=180°,代入求出即可.【详解】∵C、D是AB为直径的半圆O上的点,∴∠BAD+∠BCD=180°.∵∠BAD=50°,∴∠BCD=130°.故答案为:130°.【点睛】本题考查了圆周角定理和圆内接四边形的性质,能根据圆内接四边形的性质得出∠BAD+∠BCD=180°是解答本题的关键.18、①【分析】由方程有两个相等的实数根,得到根的判别式等于1,再由a+b+c=1,把表示出b代入根的判别式中,变形后即可得到a=c.【详解】解:∵方程有两个相等实数根,且a+b+c=1,∴b2﹣4ac=1,b=﹣a﹣c,将b=﹣a﹣c代入得:a2+2ac+c2﹣4ac=(a﹣c)2=1,则a=c.故答案为:①.【点睛】此题考查了根的判别式,以及一元二次方程的解,一元二次方程中根的判别式大于1,方程有两个不相等的实数根;根的判别式等于1,方程有两个相等的实数根;根的判别式小于1,方程无解.三、解答题(共66分)19、(1)16,20;(2)90;(3)【分析】(1)用参加足球的人数除以它所占的百分比得到调查的总人数,然后计算参加篮球的人数和参加排球人数的百分比得到a、b的值;(2)用600乘以样本中参加足球人数的百分比即可;(3)画树状图展示所有12种等可能的结果,找出选出一男一女组成混合双打组合的结果数,然后根据概率公式计算.【详解】解:(1)调查的总人数为6÷15%=40(人),所以a=40×40%=16,b%=×100%=20%,则b=20;(2)600×15%=90,所以估计该年级参加足球活动的人数约90人;故答案为16;20;90;(3)画树状图为:共有12种等可能的结果,其中选出一男一女组成混合双打组合的结果数为8,所以恰好选出一男一女组成混合双打组合的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.20、(1)见解析;(2).【分析】(1)连接OC,则,由角平分线的性质和,得到,即可得到结论成立;(2)由AB是直径,得到∠AEB=90°,则四边形DEFC是矩形,由三角形中位线定理,得到BE=2CD=8,由勾股定理,即可求出答案.【详解】(1)证明:连接,交于,由是切线得;又∵,∴,∵,∴,∴,∴,即.(2)解:∵是的直径,∴,∵,∴,∴,∵,∴,∴,∵,∴四边形是矩形,∴,∴,∴;∴的半径为.【点睛】本题考查了圆的切线的性质,矩形的判定和性质,角平分线性质,三角形的中位线定理,以及勾股定理,解题的关键是掌握所学知识进行求解,正确得到AB的长度.21、1cm.【分析】设每个彩条的宽度为xcm,根据剩余面积为504cm2,建立方程求出其解即可.【详解】设每个彩条的宽度为xcm,由题意,得(30﹣2x)(20﹣2x)=504,解得:x1=24(舍去),x2=1.答:每个彩条的宽度为1cm.【点睛】本题考查一元二次方程的应用,解题的关键是根据剩余面积=总面积-彩条面积列出方程.22、(1)x1=0,x2=7;(2),【解析】(1)用因式分解法求解即可;(2)用配方法求解即可.【详解】(1)∵7x2-49x=0,∴x2-7x=0,∴.解得x1=0,x2=7(2)移项,得,配方,得,开平方,得.解得,【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.23、(1);(2)的值不变化,值为,理由见解析;(3)【分析】(1)由平行线分线段成比例定理即可得出答案;(2)证明△ABD∽△ACE,得出==(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,则DM=CN,DN=MC,由三角函数定义得出=,=,得出=,求出AE=AD=,DE=AE=,得出CE=CD﹣DE=,由勾股定理得出AC==,得出BC=AC=,由面积法求出CN=DM=,得出BN=BC+CN=,由勾股定理得出AM==,得出DN=MC=AM+AC=,再由勾股定理即可得出答案.【详解】(1)∵DE∥BC,∴===;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DE∥B,∴△ADE∽△ABC,∴=,由旋转的性质得:∠BAD=∠CAE,∴△ABD∽△ACE,∴==;(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,如图3所示:则四边形DMCN是矩形,∴DM=CN,DN=MC,∵∠BAC=∠ADC=θ,且tanθ=,∴=,=,∴=,∴AE=AD=×3=,DE=AE=,∴CE=CD﹣DE=6﹣=,∴AC===∴BC=AC=,∵△ACD的面积=AC×DM=CD×AE,∴CN=DM==,∴BN=BC+CN=,AM===,∴DN=MC=AM+AC=,∴BD===.【点睛】本题是四边形综合题目,考查了相似三角形的判定与性质、旋转的性质、平行线分线段成比例定理、矩形的判定与性质、勾股定理、三角函数定义、三角形面积等知识;熟练掌握相似三角形的判定与性质和勾股定理是解题的关键.24、(1)y=﹣x2+2x+3;(2)点E(,0);(3)PB2的值为16+8.【分析】(1)求出点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式,即可求解;(2)如图1,作点C关于x轴的对称点C′,连接CD′交x轴于点E,则此时EC+ED为最小,△EDC的周长最小,即可求解;(3)分点P在x轴上方、点P在x轴下方两种情况,由勾股定理可求解.【详解】(1)直线y=﹣x+3与x轴、y轴分别交于B、C两点,令x=0,则y=3,令y=0,则x=3,∴点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式得:,解得:,故函数的表达式为:y=﹣x2+2x+3;(2)如图1,作点C关于x轴的对称点C′,连接CD′交x轴于点E,此时EC+ED为最小,则△EDC的周长最小,令x=0,则﹣x2+2x+3=0,解得:,∴点A的坐标为(-1,0),∵y=﹣x2+2x+3,∴抛物线的顶点D的坐标为(1,4),则点C′的坐标为(0,﹣3),设直线C′D的表达式为,将C′、D的坐标代入得,解得:,∴直线C′D的表达式为:y=7x﹣3,当y=0时,x=,故点E的坐标为(,0);(3)①当点P在x轴上方时,如图2,∵点B、C的坐标分别为(3,0)、(0,3),∴OB=OC=3,则∠OCB=45°=∠APB,过点B作BH⊥AP于点H,设PH=BH=a,则PB=PA=a,由勾股定理得:AB2=AH2+BH2,∴16=a2+(a﹣a)2,解得:a2=8+4,则PB2=2a2=16+8;②当点P在x轴下方时,同理可得.综

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论