2023届山东省泰安市宁阳县数学九年级第一学期期末统考模拟试题含解析_第1页
2023届山东省泰安市宁阳县数学九年级第一学期期末统考模拟试题含解析_第2页
2023届山东省泰安市宁阳县数学九年级第一学期期末统考模拟试题含解析_第3页
2023届山东省泰安市宁阳县数学九年级第一学期期末统考模拟试题含解析_第4页
2023届山东省泰安市宁阳县数学九年级第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在平直角坐标系中,过轴正半轴上任意一点作轴的平行线,分别交函数、的图象于点、点.若是轴上任意一点,则的面积为()A.9 B.6 C. D.32.要得到抛物线y=2(x﹣4)2+1,可以将抛物线y=2x2()A.向左平移4个单位长度,再向上平移1个单位长度B.向左平移4个单位长度,再向下平移1个单位长度C.向右平移4个单位长度,再向上平移1个单位长度D.向右平移4个单位长度,再向下平移1个单位长度3.如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动.若点M、N的坐标分别为(-1,-1)、(2,-1),点B的横坐标的最大值为3,则点A的横坐标的最小值为()A.-3 B.-2.5 C.-2 D.-1.54.如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠BOD=44°,则∠C的度数是()A.44° B.22° C.46° D.36°5.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20° B.25° C.30° D.40°6.由二次函数可知()A.其图象的开口向下 B.其图象的对称轴为直线C.其顶点坐标为 D.当时,随的增大而增大7.下列语句,错误的是()A.直径是弦 B.相等的圆心角所对的弧相等C.弦的垂直平分线一定经过圆心 D.平分弧的半径垂直于弧所对的弦8.四条线段a,b,c,d成比例,其中b=3cm,c=8cm,d=12cm,则a=()A.2cm B.4cm C.6cm D.8cm9.一元二次方程的解是()A. B. C. D.10.的相反数是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知在正方形ABCD中,点E、F分别为边BC与CD上的点,且∠EAF=45°,AE与AF分别交对角线BD于点M、N,则下列结论正确的是_____.①∠BAE+∠DAF=45°;②∠AEB=∠AEF=∠ANM;③BM+DN=MN;④BE+DF=EF12.若二次根式有意义,则x的取值范围是▲.13.已知,相似比为,且的面积为,则的面积为__________.14.如图,将绕点逆时针旋转,得到,这时点恰好在同一直线上,则的度数为______.15.若是方程的一个根,则的值是________.16.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=_____.17.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC、AB于点D、E如果BC=8,,那么BD=_____.18.抛物线的顶点坐标是_______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,抛物线与轴交于,两点,与轴交于点,直线经过,两点,抛物线的顶点为,对称轴与轴交于点.(1)求此抛物线的解析式;(2)求的面积;(3)在抛物线上是否存在一点,使它到轴的距离为4,若存在,请求出点的坐标,若不存在,则说明理由.20.(6分)某商店经过市场调查,整理出某种商品在第()天的售价与销量的相关信息如下表.已知该商品的进价为每件30元,设销售该商品每天的利润为元.(1)求与的函数关系是;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?21.(6分)九年级(1)班的小华和小红两名学生10次数学测试成绩如下表(表I)所示:小花708090807090801006080小红908010060908090606090现根据上表数据进行统计得到下表(表Ⅱ):姓名平均成绩中位数众数小华80小红8090(1)填空:根据表I的数据完成表Ⅱ中所缺的数据;(2)老师计算了小红的方差请你计算小华的方差并说明哪名学生的成绩较为稳定.22.(8分)在推进城乡生活垃圾分类的行动中,某校数学兴趣小组为了了解居民掌握垃圾分类知识的情况,对两小区各600名居民进行测试,从中各随机抽取50名居民成绩进行整理得到部分信息:(信息一)小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);(信息二)上图中,从左往右第四组成绩如下:75777779797980808182828383848484(信息三)两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差75.1___________7940%27775.1777645%211根据以上信息,回答下列问题:(1)求小区50名居民成绩的中位数;(2)请估计小区600名居民成绩能超过平均数的人数;(3)请尽量从多个角度,选择合适的统计量分析两小区参加测试的居民掌握垃圾分类知识的情况.23.(8分)如图,的直径为,点在上,点,分别在,的延长线上,,垂足为,.(1)求证:是的切线;(2)若,,求的长.24.(8分)计算或解方程:(1)(2)25.(10分)如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,顶点为D,设点E(x,y)是抛物线上一动点,且在x轴下方.(1)求抛物线的解析式;(2)当点E(x,y)运动时,试求三角形OEB的面积S与x之间的函数关系式,并求出面积S的最大值?(3)在y轴上确定一点M,使点M到D、B两点距离之和d=MD+MB最小,求点M的坐标.26.(10分)二次函数y=x2﹣2x﹣3图象与x轴交于A、B两点,点A在点B左侧,求AB的长.

参考答案一、选择题(每小题3分,共30分)1、C【分析】连接OA、OB,利用k的几何意义即得答案.【详解】解:连接OA、OB,如图,因为AB⊥x轴,则AB∥y轴,,,,所以.故选C.【点睛】本题考查了反比例函数系数k的几何意义,属于常考题型,熟知k的几何意义是关键.2、C【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【详解】∵y=2(x﹣4)2+1的顶点坐标为(4,1),y=2x2的顶点坐标为(0,0),∴将抛物线y=2x2向右平移4个单位,再向上平移1个单位,可得到抛物线y=2(x﹣4)2+1.故选:C.【点睛】本题考查了二次函数图象与几何变换,求出顶点坐标并抓住点的平移规律是解题关键.3、C【分析】根据顶点P在线段MN上移动,又知点M、N的坐标分别为(-1,-2)、(1,-2),分别求出对称轴过点M和N时的情况,即可判断出A点坐标的最小值.【详解】解:根据题意知,点B的横坐标的最大值为3,当对称轴过N点时,点B的横坐标最大,∴此时的A点坐标为(1,0),当对称轴过M点时,点A的横坐标最小,此时的B点坐标为(0,0),∴此时A点的坐标最小为(-2,0),∴点A的横坐标的最小值为-2,故选:C.【点睛】本题主要考查二次函数的综合题的知识点,解答本题的关键是熟练掌握二次函数的图象对称轴的特点,此题难度一般.4、B【分析】根据圆周角定理解答即可.【详解】解,∵∠BOD=44°,∴∠C=∠BOD=22°,故选:B.【点睛】本题考查了圆周角定理,属于基本题型,熟练掌握圆周角定理是关键.5、B【分析】直接利用切线的性质得出∠OCD=90°,进而得出∠DOC=50°,进而得出答案.【详解】解:连接OC,∵DC是⊙O的切线,C为切点,∴∠OCD=90°,∵∠D=40°,∴∠DOC=50°,∵AO=CO,∴∠A=∠ACO,∴∠A=∠DOC=25°.

故选:B.【点睛】此题主要考查了切线的性质,正确得出∠DOC=50°是解题关键.6、B【分析】根据二次函数的图像与性质即可得出答案.【详解】A:a=3,所以开口向上,故A错误;B:对称轴=4,故B正确;C:顶点坐标为(4,-2),故C错误;D:当x<4时,y随x的增大而减小,故D错误;故答案选择D.【点睛】本题考查的是二次函数,比较简单,需要熟练掌握二次函数的图像与性质.7、B【分析】将每一句话进行分析和处理即可得出本题答案.【详解】A.直径是弦,正确.B.∵在同圆或等圆中,相等的圆心角所对的弧相等,∴相等的圆心角所对的弧相等,错误.C.弦的垂直平分线一定经过圆心,正确.D.平分弧的半径垂直于弧所对的弦,正确.故答案选:B.【点睛】本题考查了圆中弦、圆心角、弧度之间的关系,熟练掌握该知识点是本题解题的关键.8、A【解析】由四条线段a、b、c、d成比例,根据比例线段的定义,即可得,又由b=3cm,c=8cm,d=12cm,即可求得a的值.【详解】∵四条线段a、b、c、d成比例,∴∵b=3cm,c=8cm,d=12cm,

解得:a=2cm.

故答案为A.【点睛】此题考查了比例线段的定义.解题的关键是熟记比例线段的概念.9、D【分析】这个式子先移项,变成x2=4,从而把问题转化为求4的平方根.【详解】移项得,x2=4开方得,x=±2,故选D.【点睛】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.10、D【详解】考查相反数的概念及应用,只有符号不同的两个数,叫做互为相反数.的相反数是.故选D.二、填空题(每小题3分,共24分)11、①②④【分析】由∠EAF=45°,可得∠BAE+∠DAF=45°,故①正确;如图,把△ADF绕点A顺时针旋转90°得到△ABH,根据三角形的外角的性质得到∠ANM=∠AEB,于是得到∠AEB=∠AEF=∠ANM;故②正确;由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,由已知条件得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∴∠AEB=∠AEF,求得BE+BH=BE+DF=EF,故④正确;BM、DN、MN存在BM2+DN2=MN2的关系,故③错误.【详解】解:∵∠EAF=45°,∴∠BAE+∠DAF=45°,故①正确;如图,把△ADF绕点A顺时针旋转90°得到△ABH,

由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,

∵∠EAF=45°,

∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,

∴∠EAH=∠EAF=45°,

在△AEF和△AEH中,,∴△AEF≌△AEH(SAS),

∴EH=EF,

∴∠AEB=∠AEF,

∴BE+BH=BE+DF=EF,故④正确;∵∠ANM=∠ADB+∠DAN=45°+∠DAN,

∠AEB=90°-∠BAE=90°-(∠HAE-∠BAH)=90°-(45°-∠BAH)=45°+∠BAH,

∴∠ANM=∠AEB,

∴∠AEB=∠AEF=∠ANM;故②正确;BM、DN、MN满足等式BM2+DN2=MN2,而非BM+DN=MN,故③错误.故答案为①②④.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,熟记各性质并利用旋转变换作辅助线构造成全等三角形是解题的关键.12、.【分析】根据二次根式有意义的条件:被开方数大于等于0列出不等式求解.【详解】根据二次根式被开方数必须是非负数的条件,得.【点睛】本题考查二次根式有意义的条件,牢记被开方数必须是非负数.13、【分析】根据相似三角形的性质,即可求解.【详解】∵,相似比为,∴与,的面积比等于4:1,∵的面积为,∴的面积为1.故答案是:1.【点睛】本题主要考查相似三角形的性质定理,掌握相似三角形的面积比等于相似比的平方,是解题的关键.14、20°【解析】先判断出∠BAD=140°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.【详解】∵将△ABC绕点A逆时针旋转140°,得到△ADE,∴∠BAD=140°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为140°的等腰三角形,∴∠B=∠BDA,∴∠B=(180°−∠BAD)=20°,故答案为:20°【点睛】此题考查旋转的性质,等腰三角形的判定与性质,三角形内角和定理,解题关键在于判断出△BAD是等腰三角形15、1【分析】将代入方程,得到,进而得到,,然后代入求值即可.【详解】解:由题意,将代入方程∴,,∴故答案为:1【点睛】本题考查一元二次方程的解,及分式的化简,掌握方程的解的概念和平方差公式是本题的解题关键.16、1.【解析】试题分析:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,则a=4,b=-3,从而得出a+b.试题解析:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴a=4且b=-3,∴a+b=1.考点:关于原点对称的点的坐标.17、【解析】:∵在RT△ABC中,∠C=90°,BC=8,tanA=,∴AC=,∴AB=,∵边AB的垂直平分线交边AB于点E,∴BE=,∵在RT△BDE中,∠BED=90°,∴cosB=,∴BD=,故答案为.点睛:本题考查了解直角三角形,线段平分线的性质,掌握直角三角形中边角之间的关系是解答本题的关键.18、(5,3)【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h,k),题目比较简单.三、解答题(共66分)19、(1)y=﹣x2+x+2;(2);(3)存在一点P或,使它到x轴的距离为1【分析】(1)先根据一次函数的解析式求出A和C的坐标,再将点A和点C的坐标代入二次函数解析式即可得出答案;(2)先求出顶点D的坐标,再过D点作DM平行于y轴交AC于M,再分别以DM为底求△ADM和△DCM的面积,相加即可得出答案;(3)令y=1或y=-1,求出x的值即可得出答案.【详解】解:(1)直线y=﹣x+2中,当x=0时,y=2;当y=0时,0=﹣x+2,解得x=1∴点A、C的坐标分别为(0,2)、(1,0),把A(0,2)、C(1,0)代入解得,故抛物线的表达式为:y=﹣x2+x+2;(2)y=﹣x2+x+2∴抛物线的顶点D的坐标为,如图1,设直线AC与抛物线的对称轴交于点M直线y=﹣x+2中,当x=时,y=点M的坐标为,则DM=∴△DAC的面积为=;(3)当P到x轴的距离为1时,则①当y=1时,﹣x2+x+2=1,而,所以方程没有实数根②当y=-1时,﹣x2+x+2=-1,解得则点P的坐标为或;综上,存在一点P或,使它到x轴的距离为1.【点睛】本题考查的是二次函数,难度适中,需要熟练掌握“铅垂高、水平宽”的方法来求面积.20、(1);(2)销售该商品第45天时,当天销售利润最大,最大利润是6050元【分析】(1)根据利润=(每件售价-进价)×每天销量,分段计算即可得出函数关系式;(2)根据所得函数的性质,分别求出最大值,比较即可.【详解】解:(1)当时,当时,故与的函数关系式为:,(为整数)(2)当时,∵,∴当时,有最大值6050元;当时,,∵,∴随的增大而减小.当时,有最大值6000元.∵,∴当时,有最大值6050元.∴销售该商品第45天时,当天销售利润最大,最大利润是6050元.【点睛】本题考查的知识点是二次函数的实际应用,掌握二次函数的性质是解此题的关键.21、(1)见解析;(2)小华的方差是120,小华成绩稳定.【分析】(1)由表格可知,小华10次数学测试中,得60分的1次,得70分的2次,得1分的4次,得90分的2次,得100分的1次,根据加权平均数的公式计算小华的平均成绩,将小红10次数学测试的成绩从小到大排列,可求出中位数,根据李华的10个数据里的各数出现的次数,可求出测试成绩的众数;

(2)先根据方差公式分别求出两位同学10次数学测试成绩的方差,再比较大小,其中较小者成绩较为稳定.【详解】(1)解:(1)小华的平均成绩为:(60×1+70×2+1×4+90×2+100×1)=1,

将小红10次数学测试的成绩从小到大排列为:60,60,60,1,1,90,90,90,90,100,第五个与第六个数据为1,90,所以中位数为=85,

小华的10个数据里1分出现了4次,次数最多,所以测试成绩的众数为1.

填表如下:姓

名平均成绩中位数众数小华11小红85(2)小华同学成绩的方差:S2=[102+02+102+02+102+102+02+202+202+02]

=(100+100+100+100+400+400)

=120,

小红同学成绩的方差为200,

∵120<200,

∴小华同学的成绩较为稳定.【点睛】本题考查平均数、中位数、众数、方差的意义.一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.22、(1)76;(2)300人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数【分析】(1)因为有50名居民,中位数应为第25名和第26名成绩的平均值,所以中位数落在第四组,再根据信息二中的表格数据可得出结果;

(2)先求出A小区超过平均数的人数,即(16-1)+10=25(人),再根据小区600名居民成绩能超过平均数的人数=600×,即可得出结果;

(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.【详解】解:(1)因为有50名居民,中位数应为第25名和第26名成绩的平均值.而前三组的总人数为:4+8+12=24(人),所以中位数落在第四组,第25名的成绩为75分,第26名的成绩为77分,所以中位数为76,故答案为:76;(2)根据题意得,600×=300(人),答:A小区600名居民成绩能超过平均数的人数300人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.(答案不唯一,合理即可;)【点睛】本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23、(1)见解析;(2)【分析】(1)连接OC,根据三角形的内角和得到∠EDC+∠ECD=90°,根据等腰三角形的性质得到∠A=∠ACO,得到∠OCD=90°,于是得到结论;

(2)根据已知条件得到OC=OB=AB=2,根据勾股定理即可得到结论.【详解】(1)证明:连接OC,

∵DE⊥AE,

∴∠E=90°,

∴∠EDC+∠ECD=90°,

∵∠A=∠CDE,

∴∠A+∠DCE=90°,

∵OC=OA,

∴∠A=∠ACO,

∴∠ACO+∠DCE=90°,

∴∠OCD=90°,

∴OC⊥CD,

∴CD是⊙O的切线;

(2)解:∵AB=4,BD=3,

∴OC=OB=AB=2,

∴OD=2+3=5,

∴CD===.【点睛】本题考查了切线的判定和性质,勾股定理,等腰三角形的性质,平角的定义,熟练掌握切线的判定定理是解题的关键.24、(1)5-;(2)x1=-2,x2=【分析】(1)利用完全平方差公式以及化简二次根式和代入特殊三角函数进行计算即可;(2)由题意观察原方程,可用因式分解法中十字相乘法或者公式法求解.【详解】(1)计算:解:原式=7-4++2××=7-4+2-2+=5-.(2)解法一:(2x-3)(x+2)=02x-3=0或x+2=0,x1=-2,x2=.解法二:a=2,b=1,c=-6,△=b2-4ac=12-4×2×(-6)=49,x=,x1=-2,x2=.【点睛】本题主要考查用因式分解法解一元二次方程以及实数的综合运算,涉及的知识点有特殊角的三角形函数值、完全平方差公式以及二次根式的分母有理化等.25、(1)y=x2﹣4x+;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论