版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列方程是一元二次方程的是()A.2x2-5x+3 B.2x2-y+1=0 C.x2=0 D.+x=22.如图,在中,,垂足为点,一直角三角板的直角顶点与点重合,这块三角板饶点旋转,两条直角边始终与边分别相交于,则在运动过程中,与的关系是()A.一定相似 B.一定全等 C.不一定相似 D.无法判断3.如图,点A、点B是函数y=的图象上关于坐标原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积是4,则k的值是()A.-2 B.±4 C.2 D.±24.已知,下列说法中,不正确的是()A. B.与方向相同C. D.5.若点,,在反比例函数的图像上,则的大小关系是()A. B. C. D.6.如图,OA是⊙O的半径,弦BC⊥OA,D是优弧上一点,如果∠AOB=58º,那么∠ADC的度数为()A.32º B.29º C.58º D.116º7.如图,在△ABC中,∠A=75°,AB=6,AC=8,将△ABC沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B. C. D.8.下列关于反比例函数,结论正确的是()A.图象必经过B.图象在二,四象限内C.在每个象限内,随的增大而减小D.当时,则9.如图,在矩形ABCD中,AB=4,AD=3,若以A为圆心,4为半径作⊙A.下列四个点中,在⊙A外的是()A.点A B.点B C.点C D.点D10.从某多边形的一个顶点出发,可以作条对角线,则这个多边形的内角和与外角和分别是()A.; B.; C.; D.;二、填空题(每小题3分,共24分)11.如图,起重机臂长,露在水面上的钢缆长,起重机司机想看看被打捞的沉船情况,在竖直平面内把起重机臂逆时针转动到的位置,此时露在水面上的钢缆的长度是___________.12.若二次函数的图像与轴只有一个公共点,则实数_______.13.如图,在矩形中,在上,在矩形的内部作正方形.当,时,若直线将矩形的面积分成两部分,则的长为________.14.将抛物线y=(x+2)25向右平移2个单位所得抛物线解析式为_____.15.用一个圆心角为150º,半径为8的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为________.16.在Rt△ABC中,∠C=90°,若sinA=,则cosB=_____.17.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.1.根据上述数据,估计口袋中大约有_______个黄球18.若二次函数的图像经过点,则的值是_______.三、解答题(共66分)19.(10分)如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=3,BC=4时,求的值.20.(6分)李老师将1个黑球和若干个白球放入一个不透明的口袋中并搅匀,让学生进行摸球试验,每次摸出一个球(放回),下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸到黑球的次数m233160130203251摸到黑球的频率0.230.210.30_______________(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个黑球的概率是______.(结果都保留小数点后两位)(2)估算袋中白球的个数为________.(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树状图或列表的方法计算出两次都摸出白球的概率.21.(6分)如图,在矩形ABCD中,AB=2,E为BC上一点,且BE=1,∠AED=90°,将AED绕点E顺时针旋转得到,A′E交AD于P,D′E交CD于Q,连接PQ,当点Q与点C重合时,AED停止转动.(1)求线段AD的长;(2)当点P与点A不重合时,试判断PQ与的位置关系,并说明理由;(3)求出从开始到停止,线段PQ的中点M所经过的路径长.22.(8分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:(元)19202130(件)62605840(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).(2)当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?(3)根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?23.(8分)如图,已知AB是⊙O的直径,过点O作弦BC的平行线,交过点A的切线AP于点P,连结AC.求证:△ABC∽△POA.24.(8分)文明交流互鉴是推动人类文明进步和世界和平发展的重要动力.2019年5月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注.某市一研究机构为了了解10~60岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:(1)请直接写出_______,_______,第3组人数在扇形统计图中所对应的圆心角是_______度.(2)请补全上面的频数分布直方图.(3)假设该市现有10~60岁的市民300万人,问40~50岁年龄段的关注本次大会的人数约有多少?25.(10分)杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体看成一点的路线是抛物线的一部分,如图所示.求演员弹跳离地面的最大高度;已知人梯高米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.26.(10分)解方程:x2+2x﹣1=1.
参考答案一、选择题(每小题3分,共30分)1、C【解析】一元二次方程必须满足四个条件:(1)未知数的最高次数是1;(1)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A、不是方程,故本选项错误;B、方程含有两个未知数,故本选项错误;C、符合一元二次方程的定义,故本选项正确;D、不是整式方程,故本选项错误.故选:C.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.2、A【分析】根据已知条件可得出,,再结合三角形的内角和定理可得出,从而可判定两三角形一定相似.【详解】解:由已知条件可得,,∵,∴,∵,∴,继而可得出,∴.故选:A.【点睛】本题考查的知识点是相似三角形的判定定理,灵活利用三角形内角和定理以及余角定理是解此题的关键.3、C【详解】解:∵反比例函数的图象在一、三象限,∴k>0,∵BC∥x轴,AC∥y轴,∴S△AOD=S△BOE=k,∵反比例函数及正比例函数的图象关于原点对称,∴A、B两点关于原点对称,∴S矩形OECD=1△AOD=k,∴S△ABC=S△AOD+S△BOE+S矩形OECD=1k=4,解得k=1.故选C.【点睛】本题考查反比例函数的性质.4、A【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【详解】A、,故该选项说法错误B、因为,所以与的方向相同,故该选项说法正确,C、因为,所以,故该选项说法正确,D、因为,所以;故该选项说法正确,故选:A.【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.5、C【解析】根据点A、B、C分别在反比例函数上,可解得、、的值,然后通过比较大小即可解答.【详解】解:将A、B、C的横坐标代入反比函数上,得:y1=-6,y2=3,y3=2,所以,;故选C.【点睛】本题考查了反比例函数的计算,熟练掌握是解题的关键.6、B【分析】根据垂径定理可得,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴,∴∠ADC=∠AOB=29°.故选B.【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7、D【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;故选:D.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.8、B【分析】根据反比例函数的图象和性质,逐一判断选项,即可得到答案.【详解】∵,∴A错误,∵k=-8<0,即:函数的图象在二,四象限内,∴B正确,∵k=-8<0,即:在每个象限内,随的增大而增大,∴C错误,∵当时,则或,∴D错误,故选B.【点睛】本题主要考查反比例函数的图象和性质,掌握比例系数k的意义与增减性,是解题的关键.9、C【解析】连接AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,∵圆A的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.10、A【分析】根据边形从一个顶点出发可引出条对角线,求出的值,再根据边形的内角和为,代入公式就可以求出内角和,根据多边形的外角和等于360,即可求解.【详解】∵多边形从一个顶点出发可引出4条对角线,
∴,
解得:,
∴内角和;任何多边形的外角和都等于360.故选:A.【点睛】本题考查了多边形的对角线,多边形的内角和及外角和定理,是需要熟记的内容,比较简单.求出多边形的边数是解题的关键.二、填空题(每小题3分,共24分)11、30m【解析】首先在Rt△ABC中,利用正弦值可推出∠CAB=45°,然后由转动角度可得出∠C'AB'=60°,在Rt△C'AB'中利用60°的正弦即可求出B'C'.【详解】再Rt△ABC中,∵∴∠CAB=45°起重机臂逆时针转动到的位置后,∠C'AB'=∠CAB+15°=60°在Rt△C'AB'中,B'C'=m故答案为:30m.【点睛】本题考查了解直角三角形,熟练掌握直角三角形中的边角关系是解题的关键.12、1【分析】二次函数的图象与x轴只有一个公共点,则,据此即可求得.【详解】解:中,,,,,解得:.故答案为:1.【点睛】本题考查了抛物线与x轴的交点,二次函数(a,b,c是常数,a≠0)的交点与一元二次方程根之间的关系.决定抛物线与x轴的交点个数.>0时,抛物线与x轴有2个交点;=0时,抛物线与x轴有1个交点;<0时,抛物线与x轴没有交点.13、或【分析】分二种情形分别求解:①如图1中,延长交于,当时,直线将矩形的面积分成两部分.②如图2中,延长交于交的延长线于,当时,直线将矩形的面积分成两部分.【详解】解:如图1中,设直线交于,当时,直线将矩形的面积分成两部分.,,,.如图2中,设直线长交于交的延长线于,当时,直线将矩形的面积分成两部分,易证∴,,,,.综上所述,满足条件的的值为或.故答案为:或.【点睛】本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.14、y=x2−1【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−1向右平移2个单位,得:y=(x+2−2)2−1,即y=x2−1.故答案是:y=x2−1.【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.15、【分析】根据扇形条件计算出扇形弧长,由此得到其所围成的圆锥的底面圆周长,由圆的周长公式计算底面圆的半径.【详解】∵圆心角为150º,半径为8∴扇形弧长:∴其围成的圆锥的底面圆周长为:∴设底面圆半径为则,得故答案为:.【点睛】本题考查了扇形弧长的计算,及扇形与圆锥之间的对应关系,熟知以上内容是解题的关键.16、.【解析】根据一个角的余弦等于它余角的正弦,可得答案.【详解】解:由∠C=90°,若sinA=,得cosB=sinA=,故答案为.【点睛】本题考查了互余两角的三角函数,利用一个角的余弦等于它余角的正弦是解题关键.17、2【详解】解:∵小明通过多次摸球实验后发现其中摸到红色球的频率稳定在0.1,设黄球有x个,∴0.1(x+10)=10,解得x=2.答:口袋中黄色球的个数很可能是2个.18、1【分析】首先根据二次函数的图象经过点得到,再整体代值计算即可.【详解】解:∵二次函数的图象经过点,
∴,
∴,
∴==1,
故答案为1.【点睛】本题主要考查了二次函数图象上点的坐标特征,解题的关键是利用整体代值计算,此题比较简单.三、解答题(共66分)19、(1)见解析;(2).【分析】(1)只要根据平行线的性质和角平分线的定义即可得到∠1=∠3,进而可得结论;(2)易证△AEF∽△CEB,于是AE:CE=AF:BC,然后结合(1)的结论即可求出AE:EC,进一步即得结果.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠3,∵BF平分∠ABC,∴∠1=∠2,∴∠1=∠3,∴AB=AF;(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,∴△AEF∽△CEB,∴AE:CE=AF:BC,∵AF=AB=3,BC=4,∴AE:EC=3:4,∴.【点睛】本题考查了平行四边形的性质、等腰三角形的判定和相似三角形的判定和性质,属于常考题型,熟练掌握上述基本知识是解题关键.20、表格内数据:0.26,0.25,0.25(1)0.25;(2)1;(1).【分析】(1)直接利用频数÷总数=频率求出答案;(2)设袋子中白球有x个,利用表格中数据估算出得到黑球的频率列出关于x的分式方程,【详解】(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近0.25,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,=0.25,x=1.答:估计袋中有1个白球.(1)由题意画树状图得:由树状图可知,所有可能出现的结果共有16种,这些结果出现的可能性相等,其中两次都摸出白球的有9种情况.所以P(两次都摸出白球)=.【点睛】本题主要考查了模拟实验以及频率求法和树状图法与列表法求概率,解决本题的关键是要熟练掌握概率计算方法.21、(1)5;(2)∥,理由见解析;(3)【分析】(1)求出AE=,证明△ABE∽△DEA,由可求出AD的长;(2)过点E作EF⊥AD于点F,证明△PEF∽△QEC,再证△EPQ∽△A'ED',可得出∠EPQ=∠EA'D',则结论得证;(3)由(2)知PQ∥A′D′,取A′D′的中点N,可得出∠PEM为定值,则点M的运动路径为线段,即从AD的中点到DE的中点,由中位线定理可得出答案.【详解】解:(1)∵AB=2,BE=1,∠B=90°,∴AE===,∵∠AED=90°,∴∠EAD+∠ADE=90°,∵矩形ABCD中,∠ABC=∠BAD=90°,∴∠BAE+∠EAD=90°,∴∠BAE=∠ADE,∴△ABE∽△DEA,∴,∴,∴AD=5;(2)PQ∥A′D′,理由如下:∵,∠AED=90°∴==2,∵AD=BC=5,∴EC=BC﹣BE=5﹣1=4,过点E作EF⊥AD于点F,则∠FEC=90°,∵∠A'ED'=∠AED=90°,∴∠PEF=∠CEQ,∵∠C=∠PFE=90°,∴△PEF∽△QEC,∴,∵,∴,∴PQ∥A′D′;(3)连接EM,作MN⊥AE于N,由(2)知PQ∥A′D′,∴∠EPQ=∠A′=∠EAP,又∵△PEQ为直角三角形,M为PQ中点,∴PM=ME,∴∠EPQ=∠PEM,∵∠EPF=∠EAP+∠AEA′,∠NEM=∠PEM+∠AEA′∴∠EPF=∠NEM,又∵∠PFE=∠ENM﹣90°,∴△PEF∽△EMN,∴=为定值,又∵EF=AB=2,∴MN为定值,即M的轨迹为平行于AE的线段,∵M初始位置为AD中点,停止位置为DE中点,∴M的轨迹为△ADE的中位线,∴线段PQ的中点M所经过的路径长==.【点睛】本题考查了矩形的性质,相似三角形的判定与性质,勾股定理,平行线的判定,中位线定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.22、(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.【解析】(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.列方程组得到y关于x的函数表达式y=﹣2x+100,根据题意得到w=﹣2x2+136x﹣1800;(2)把w=﹣2x2+136x﹣1800配方得到w=﹣2(x﹣34)2+1.根据二次函数的性质即可得到结论;(3)根据题意列方程即可得到即可.【详解】解:(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.则,解得,∴y=﹣2x+100,∴y关于x的函数表达式y=﹣2x+100,∴w=(x﹣18)•y=(x﹣18)(﹣2x+100)∴w=﹣2x2+136x﹣1800;(2)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+1.∴当销售单价为34元时,∴每日能获得最大利润1元;(3)当w=350时,350=﹣2x2+136x﹣1800,解得x=25或43,由题意可得25≤x≤32,则当x=32时,18(﹣2x+100)=648,∴制造这种纪念花灯每日的最低制造成本需要648元.【点睛】此题主要考查了二次函数的应用,根据已知得出函数关系式.23、证明见解析.【解析】试题分析:由BC∥OP可得∠AOP=∠B,根据直径所对的圆周角为直角可知∠C=90°,再根据切线的性质知∠OAP=90°,从而可证△ABC∽△POA.试题解析:证明:∵BC∥OP,∴∠AOP=∠B,∵AB是直径,∴∠C=90°,∵PA是⊙O的切线,切点为A,∴∠OAP=90°,∴∠C=∠OAP,∴△ABC∽△POA.考点:1.切线的性质;2.相似三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度生态农业示范项目鸭苗扶持合同4篇
- 2025年度古建筑群虫害防治与修缮工程合同4篇
- 离婚制度下的离婚诉讼策略:2025年度离婚诉讼技巧合同2篇
- N95型防护口罩批量采购合同样本版B版
- 2025年度绿色环保涂料销售及施工安装合同范本4篇
- 二零二五年度生产线承包与供应链优化合同4篇
- 2025版存量房交易税收优惠政策执行合同3篇
- 2025年度船舶锚泊设备检查与维修合同4篇
- 二零二五年度旅游设施安全检测合同4篇
- 2025版煤炭期货交易风险管理合同范本3篇
- 2025届河南省郑州一中高三物理第一学期期末学业水平测试试题含解析
- 个体工商户章程(标准版)
- 七年级英语阅读理解55篇(含答案)
- 废旧物资买卖合同极简版
- 2024年正定县国资产控股运营集团限公司面向社会公开招聘工作人员高频考题难、易错点模拟试题(共500题)附带答案详解
- 李克勤红日标准粤语注音歌词
- 教科版六年级下册科学第一单元《小小工程师》教材分析及全部教案(定稿;共7课时)
- 中药材产地加工技术规程 第1部分:黄草乌
- 危险化学品经营单位安全生产考试题库
- 案例分析:美国纽约高楼防火设计课件
- 移动商务内容运营(吴洪贵)任务一 用户定位与选题
评论
0/150
提交评论