教案 教学设计_第1页
教案 教学设计_第2页
教案 教学设计_第3页
教案 教学设计_第4页
教案 教学设计_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

命题、定理、证明课题命题、定理、证明授课人教学目标知识技能掌握命题、定理的概念,并能分清命题的题设和结论,能判定真命题和假命题;能根据已知条件对简单问题进行证明.数学思考通过讨论、探究、交流等形式,使学生在辩论中获得知识体验.问题解决用类比的方法,经历自主学习、合作探究,领悟命题的有关概念.情感态度在学习过程中培养学生敢于怀疑、大胆探究的品质,培养合作、交流的能力,从活动中体会学习的快乐.教学重点掌握命题、定理的概念,并能分清命题的组成.教学难点分清命题的组成,并能把一个命题改写成“如果……那么……”的形式.授课类型新授课课时教具教学活动教学步骤师生活动设计意图活动一:创设情境导入新课【课堂引入】以下6个句子,有什么不同?你能对它们进行分类吗?如果你能分类,分类的依据是什么?(1)熊猫没有翅膀;(2)对顶角相等;(3)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(4)你喜欢数学吗?(5)作线段AB=CD;(6)清新的空气;(7)不许讲话.指出像(1)(2)(3)这样判断一件事情的语句,叫做命题.既复习了已学知识,又让学生认识了命题的多种表现形式.活动二:实践探究交流新知【探究1】命题的概念下列句子中,哪些是命题?①直角三角形的两个锐角互余;②正数都大于0;③如果∠1+∠2=180°,那么∠1与∠2互补;④太阳不是行星;⑤对顶角相等吗?⑥作一个角等于已知角.分析:①②③是命题,它们都对事情做出了肯定判断;④是命题,它对事情做出了否定判断;⑤不是命题,只表示疑问,并未做出判断;⑥不是命题,只是描述了一个作图的过程,没有做出判断.解:①②③④是命题,⑤⑥不是命题.师生共同总结判断命题的依据:对一件事做出了肯定或否定的判断的句子为命题,否则不是命题.【探究2】命题的题设和结论命题由题设和结论两部分组成,其中“题设”是已知事项,即命题中的已知条件;“结论”是由已知事项推出的事项,即结论是在已知条件的前提下可得到的结果.命题的表述有标准形式:“如果……那么……”,另外还有“若……则……”等.一般地,“如果……”和“若……”是题设部分,“那么……”和“则……”是结论部分.一些命题前面的“附加部分”属题设.要准确找出一个命题的题设和结论,特别是一些没有关联词语、题设和结论不明显的命题.1.通过各类型的语句探究命题的概念.活动二:实践探究交流新知判断下列语句是不是命题,是命题的指出命题的题设和结论,并判断此命题是真命题还是假命题.(1)画射线AC;(2)同位角相等吗?(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;(4)任意两个直角都相等;(5)如果两条直线相交,那么它们只有一个交点;(6)若|x|=|y|,则x=y.解:(1)(2)不是命题;(3)(4)(5)(6)是命题.(3)题设是两条直线被第三条直线所截,同旁内角互补,结论是这两条直线平行,是真命题;(4)题设是两个角是直角,结论是这两个角相等,是真命题;(5)题设是两条直线相交,结论是它们只有一个交点,是真命题;(6)题设是|x|=|y|,结论是x=y,是假命题.有些数学命题,如“对顶角相等”,没有写成标准形式,条件和结论不明显,要认真分析是由什么来推断什么,把它恢复成标准形式,这样就容易找到它的题设和结论.如“对顶角相等”恢复成标准形式是“如果两个角是对顶角,那么这两个角相等”.有些命题的题设之前还有题设,那么这两个题设合起来作为命题的题设,如“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”.题设是两条直线被第三条直线所截,同位角相等;结论是这两条直线平行.【探究3】定理与证明我们已经知道下列各命题都是正确的,即都是公认的真命题:(1)两点确定一条直线;(2)两点之间线段最短;(3)过一点有且只有一条直线与已知直线垂直;(4)过直线外一点有且只有一条直线与这条直线平行.2.师生通过例题共同探究命题的题设和结论的确定方法.活动二:实践探究交流新知有些命题可以从基本事实或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理.归纳:定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.探究证明:根据条件、定义以及基本事实、定理等,经过演绎推理,来判断一个命题是否正确,这样的推理过程叫做证明.图5-3-39如图5-3-39,有下列三个条件:①DE∥BC:②∠1=∠2;③∠B=∠C.(1)若从这三个条件中任选两个作为题设,另一个作为结论,组成一个命题,一共能组成几个命题,请你把它们写出来;(2)请你就其中的一个真命题给出推理过程.解:(1)一共能组成3个命题,它们是:题设①②,结论③;题设①③,结论②;题设②③,结论①.(2)情况一:题设①②,结论③.证明∵DE∥BC,∴∠1=∠B,∠2=∠C.又∵∠1=∠2,∴∠B=∠C;情况二:题设①③,结论②.证明:∵DE∥BC,∴∠1=∠B,∠2=∠C.又∵∠B=∠C,∴∠1=∠2.归纳总结:几何证明的一般步骤:第一步:根据题意画出图形;第二步:根据命题的题设和结论,结合图形,写出已知、求证;第三步:通过分析,找出证明的方法,写出证明过程.在证明几何命题时,须注意以下几点:1.明确题目的题设和结论;3.引导学生区分命题与定理的关系,且体会数学命题证明的必要性.活动二:实践探究交流新知2.证明过程中引用的根据(理由)与“定理的证明相同”;3.证明过程中每一步结果所用的根据必须是得到这一结果的充分理由;4.要防止利用未学过的定理来证明学过的命题,避免循环论证.4.归纳证明的过程有助于培养学生严密的逻辑推理能力,为后续的学习打好基础.活动三:开放训练体现应用【应用举例】例1如图5-3-40,已知直线b∥c,a⊥b.求证:a⊥c.图5-3-40证明:∵a⊥b(已知),∴∠1=90°(垂直的定义).又∵b∥c(已知),∴∠1=∠2(两直线平行,同位角相等),∴∠2=∠1=90°(等量代换),∴a⊥c(垂直的定义).变式在下面的括号内填上推理的根据.如图5-3-41,AB和CD相交于点O,∠A=∠B.求证:∠C=∠D.图5-3-41证明:∵∠A=∠B,∴AC∥BD(内错角相等,两直线平行),

∴∠C=∠D(两直线平行,内错角相等).

1.利用新知解决问题,根据相关性质进行演绎推理.2.通过变式练习巩固证明过程,训练学生推理证明的能力.活动三:开放训练体现应用分析:根据已知的条件及图形证明某个数学结论是常见的数学题目,本题以“∵”“∴”的形式将完整的说理过程展现出来,需要同学们根据图形条件及已知条件填上原因.也就是在我们推理过程的每一步必须要有理有据,不能乱写.本题既利用了平行线的判定方法,又运用了平行线的性质.【拓展提升】例2如图5-3-42,直线DE经过点A,DE∥BC,∠B=44°,∠C=85°.(1)求∠DAB的度数;(2)求∠EAC的度数;(3)求∠BAC的度数;(4)通过这道题你能说明为什么三角形的内角和是180°吗?图5-3-42知识的综合与拓展提高学生应考能力.活动四:课堂总结反思【当堂训练】课本第21页练习第1,2题;课本第22页练习第1,2题.课后作业:课本第23页习题第6,12,13题.通过练习进一步巩固所学知识,使教师及时了解学生对本课所学知识的掌握情况.【板书设计】命题、定理、证明命题概念框架图式总结,更容易形成知识网络.【教学反思】①[授课流程反思]既复习了已学知识,又让学生认识了命题的多种表现形式,从而使学生明白命题我们都已接触过,只是没有从概念上加以澄清,从而消除学生对新知识的恐惧感,增加亲切感.活动四:课堂总结反思②[讲授效果反思]本节课的教学内容较简单,通过本节课的教学,学生在区分命题的题设和结论的基础上知道命题有真假之分,其中有的真命题又叫做定理.对于假命题只要举出反例加以说明即可,其中推理过程叫做证明.③[师生互动反思]学生小组合作学习的积极性较高,体现出学生愿学、乐学的心态,教师要及时性地给予鼓励和表扬.④[习题反思]好题题号

错题题号

回顾反思,找出差距与不足,形成知识及教学体系,更进一步提升教师教学能力.

一、自学范围(20页——22页练习)二、自学目标1、了解命的概念,会把命写成“如果……那么……”的形式。2、能判断一些简单的命是真命还是假命。三、自学重点命的概念,把命写成“如果……那么……”的形式四、自学过程1、对一件事情______的语句,叫做命.2、命由_____和_____是已知事项,_____是由已知事项.3、命常可以写成__________的形式,“_____”后接的部分是没,“_______”后接的部分是结论.4、_______叫真命_______叫假命,_______叫定理.5、指出下列命的设和结论:如果AB⊥CD,垂足是O,那么∠AOC=90·,两直线平行,同位角相等.同位角相等如果a>b,a>c6、把下列命改写成“如果………那么………”的形式,并判断其是真命,还是假命.若是假命,举出一个反例.内错角相等,两直线平行.在同一平面内,平行于同一条直线的两直线平行.等角的补角相等的三条边都相等五、学效测试7、课本练习8、下列句子哪些是命:(1)猴子是动物的一种 (2)玫瑰花是动物 (3)美丽的天空(4)动物都需要水 (5)负数都大于零

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论