2023届江苏无锡市数学九上期末质量跟踪监视模拟试题含解析_第1页
2023届江苏无锡市数学九上期末质量跟踪监视模拟试题含解析_第2页
2023届江苏无锡市数学九上期末质量跟踪监视模拟试题含解析_第3页
2023届江苏无锡市数学九上期末质量跟踪监视模拟试题含解析_第4页
2023届江苏无锡市数学九上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°得到△A′B′C′的位置,连接C′B,则C′B的长为()A.2- B. C. D.12.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.18 B.16 C.13.如图,已知在中,,于,则下列结论错误的是()A. B. C. D.4.在中,,,若,则的长为()A. B. C. D.5.如图,将图形用放大镜放大,这种图形的变化属于()A.平移 B.相似 C.旋转 D.对称6.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.247.下列四个点,在反比例函数y=图象上的是(

)A.(1,-6) B.(2,4) C.(3,-2) D.(-6,-1)8.一个扇形半径30cm,圆心角120°,用它作一个圆锥的侧面,则圆锥底面半径为()A.5cm B.10cm C.20cm D.30cm9.如图,⊙O的弦AB⊥OC,且OD=2DC,AB=,则⊙O的半径为()A.1 B.2 C.3 D.910.如图,的半径等于,如果弦所对的圆心角等于,那么圆心到弦的距离等于()A. B. C. D.11.如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠OBC的度数为()A.18° B.36° C.60° D.54°12.如图,是的外接圆,已知,则的大小为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在中,,,,、分别是边、上的两个动点,且,是的中点,连接,,则的最小值为__________.14.在△ABC中,边BC、AC上的中线AD、BE相交于点G,AD=6,那么AG=____.15.某人沿着有一定坡度的坡面前进了6米,此时他在垂直方向的距离上升了2米,则这个坡面的坡度为_____.16.计算:×=______.17.已知反比例函数,当_______时,其图象在每个象限内随的增大而增大.18.已知,则________三、解答题(共78分)19.(8分)如图,在O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数.(2)若弦BC=8cm,求图中劣弧BC的长.20.(8分)如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm.点P从点A出发,沿AB边以2cm/s的速度向点B匀速移动;点Q从点B出发,沿BC边以1cm/s的速度向点C匀速移动,当一个运动点到达终点时,另一个运动点也随之停止运动,设运动的时间为t(s).(1)当PQ∥AC时,求t的值;(2)当t为何值时,△PBQ的面积等于cm2.21.(8分)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.(1)求证:EF=ED;(2)若AB=2,CD=1,求FE的长.22.(10分)如图,△ABC的三个顶点在平面直角坐标系中的坐标分别为A(3,3),B(2,1),C(5,1),将△ABC绕点O逆时针旋转180°得△A′B′C′,请你在平面直角坐标系中画出△A′B′C′,并写出△A′B′C′的顶点坐标.23.(10分)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是45°,若坡角∠FAE=30°,求大树的高度(结果保留根号).24.(10分)如图,点是反比例函数上一点,过点作轴于点,点为轴上一点,连接.(1)求反比例函数的解析式;(2)求的面积.25.(12分)如图,一根竖直的木杆在离地面3.1处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__________.(参考数据:)26.如图,AB是⊙O的直径,BC是⊙O的弦,直线MN与⊙O相切于点C,过点B作BD⊥MN于点D.(1)求证:∠ABC=∠CBD;(2)若BC=4,CD=4,则⊙O的半径是.

参考答案一、选择题(每题4分,共48分)1、C【分析】如图,连接BB′,延长BC′交AB′于点D,证明△ABC′≌△B′BC′,得到∠DBB′=∠DBA=30°;求出BD、C′D的长,即可解决问题.【详解】解:如图,连接BB′,延长BC′交AB′于点D,

由题意得:∠BAB′=60°,BA=B′A,

∴△ABB′为等边三角形,

∴∠ABB′=60°,AB=B′B;

在△ABC′与△B′BC′中,∴△ABC′≌△B′BC′(SSS),

∴∠DBB′=∠DBA=30°,

∴BD⊥AB′,且AD=B′D,∵AC=BC=,∴,∴,,,.故选:C.【点睛】本题考查旋转的性质,全等三角形的性质和判定,等边三角形的判定与性质,等腰直角三角形的性质,直角三角形斜边上的中线.作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.2、B【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是16故选B.考点:简单概率计算.3、A【分析】根据三角形的面积公式判断A、D,根据射影定理判断B、C.【详解】由三角形的面积公式可知,CD•AB=AC•BC,A错误,符合题意,D正确,不符合题意;

∵Rt△ABC中,∠ACB=90°,CD⊥AB,

∴AC2=AD•AB,BC2=BD•AB,B、C正确,不符合题意;

故选:A.【点睛】本题考查的是射影定理、三角形的面积计算,掌握射影定理、三角形的面积公式是解题的关键.4、A【解析】根据解直角三角形的三角函数解答即可【详解】如图,∵cos53°=,∴AB=故选A【点睛】此题考查解直角三角形的三角函数解,难度不大5、B【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【点睛】本题考查相似形的识别,联系图形根据相似图形的定义得出是解题的关键.6、C【分析】根据用频率估计概率可知:摸到白球的概率为0.25,根据概率公式即可求出小球的总数,从而求出红球的个数.【详解】解:小球的总数约为:6÷0.25=24(个)则红球的个数为:24-6=18(个)故选C.【点睛】此题考查的是用频率估计概率和根据概率求小球的总数,掌握概率公式是解决此题的关键.7、D【解析】由可得xy=6,故选D.8、B【解析】试题解析:设此圆锥的底面半径为r,2πr=,r=10cm故选B.考点:弧长的计算.9、C【分析】根据垂径定理可得AD=AB,由OD=2DC可得OD=OC=OA,利用勾股定理列方程求出OA的长即可得答案.【详解】∵⊙O的弦AB⊥OC,AB=,∴AD=AB=,∵OD=2DC,OA=OC,OC=OD+DC,∴OD=OC=OA,∴OA2=(OA)2+()2,解得:OA=3,(负值舍去),故选:C.【点睛】本题主要考查垂径定理及勾股定理,垂直于弦的直径平分弦,并且平分弦所对的两条弧;熟练掌握垂径定理是解题关键.10、C【分析】过O作OD⊥AB于D,根据等腰三角形三线合一得∠BOD=60°,由30°角所对的直角边等于斜边的一半求解即可.【详解】解:过O作OD⊥AB,垂足为D,∵OA=OB,∴∠BOD=∠AOB=×120°=60°,∴∠B=30°,∴OD=OB=×4=2.即圆心到弦的距离等于2.故选:C.【点睛】本题考查圆的基本性质及等腰三角形的性质,含30°角的直角三角形的性质,根据题意作出辅助线,解直角三角形是解答此题的关键.11、D【解析】根据圆周角定理,由∠A=36°,可得∠O=2∠A=72°,然后根据OB=OC,求得∠OBC=12(180°-∠O)=1故选:D点睛:此题主要考查了圆周角定理,解题时,根据同弧所对的圆周角等于圆心角的一半,求出圆心角,再根据等腰三角形的性质和三角形的内角和定理求解即可,解题关键是发现同弧所对的圆心角和圆周角,明确关系进行计算.12、B【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=100°,再根据三角形内角和定理可得答案.【详解】∵∠ACB=50°,∴∠AOB=100°,∵AO=BO,∴∠ABO=(180°-100°)÷2=40°,故选:B.【点睛】此题主要考查了三角形的外接圆与外心,圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二、填空题(每题4分,共24分)13、【分析】先在CB上取一点F,使得CF=,再连接PF、AF,然后利用相似三角形的性质和勾股定理求出AF,即可解答.【详解】解:如图:在CB上取一点F,使得CF=,再连接PF、AF,∵∠DCE=90°,DE=4,DP=PE,∴PC=DE=2,∵,∴又∵∠PCF=∠BCP,∴△PCF∽△BCP,∴∴PA+PB=PA+PF,∵PA+PF≥AF,AF=∴PA+PB≥.∴PA+PB的最小值为,故答案为.【点睛】本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.14、4【分析】由三角形的重心的概念和性质,即可得到答案.【详解】解:如图,∵AD,BE是△ABC的中线,且交点为点G,∴点G是△ABC的重心,∴;故答案为:4.【点睛】此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.15、【分析】先利用勾股定理求出AC的长,再根据坡度的定义即可得.【详解】由题意得:米,米,,在中,(米),则这个坡面的坡度为,故答案为:.【点睛】本题考查了勾股定理、坡度的定义,掌握理解坡度的定义是解题关键.16、7【分析】利用二次根式的乘法法则计算即可.【详解】解:原式故答案为:7【点睛】本题考查二次根式的乘法运算,熟练掌握二次根式的乘法运算法则是解题关键.17、【分析】根据反比例函数的性质求出m的取值范围即可.【详解】∵反比例函数在每个象限内随的增大而增大∴解得故答案为:.【点睛】本题考查了反比例函数的问题,掌握反比例函数的性质是解题的关键.18、【解析】∵,∴8b=3(3a-b),即9a=11b,∴,故答案为.三、解答题(共78分)19、(1)60°;(2)【分析】(1)先根据垂径定理得出BE=CE,,再根据圆周角定理即可得出∠AOC的度数;(2)连接OB,先根据勾股定理得出OE的长,由弦BC=8cm,可得半径的长,继而求劣弧的长;【详解】解:(1)连接OB,∵BC⊥OA,∴BE=CE,,又∵∠ADB=30°,∴∠AOC=∠AOB=2∠ADB,∴∠AOC=60°;(2)连接OB得,∠BOC=2∠AOC=120°,∵弦BC=8cm,OA⊥BC,∴CE=4cm,∴OC=cm,∴劣弧的长为:【点睛】本题主要考查了勾股定理,垂径定理,圆周角定理,掌握勾股定理,垂径定理,圆周角定理是解题的关键.20、(1)t=;(2)当t为2s或3s时,△PBQ的面积等于cm2.【分析】(1)根据PQ∥AC得到△PBQ∽△ABC,列出比例式即可求解;(2)解法一:过点Q作QE⊥AB于E,利用△BQE∽△BCA,得到,得到QE=t,根据S△PBQ=BP·QE=列出方程即可求解;解法二:过点P作PE⊥BC于E,则PE∥AC,得到△BPE∽△BAC,则,求出PE=(10-2t).,利用S△PBQ=BQ·PE=列出方程即可求解.【详解】(1)由题意得,BQ=tcm,AP=2cm,则BP=(10—2t)cm在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm∵PQ∥AC,∴△PBQ∽△ABC,∴,即,解得t=.(2)解法一:如图3,过点Q作QE⊥AB于E,则∠QEB=∠C=90°.∵∠B=∠B,∴△BQE∽△BCA,∴,即,解得QE=t.∴S△PBQ=BP·QE=,即·(10-2t)·t=.整理,得t2-5t+6=0.解这个方程,得t1=2,t2=3.∵0<t<5,∴当t为2s或3s时,△PBQ的面积等于cm2.解法二:过点P作PE⊥BC于E,则PE∥AC(如图4).∵PE∥AC.∴△BPE∽△BAC,∴,即,解得PE=(10-2t).∴S△PBQ=BQ·PE=,即·t·(10-2t)=整理,得t2-5t+6=0.解这个方程,得t1=2,t2=3.∵0<t<5,∴当t为2s或3s时,△PBQ的面积等于cm2.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定定理、适当构造辅助线进行求解.21、(1)见解析;(2)EF=.【解析】(1)由旋转的性质可求∠FAE=∠DAE=45°,即可证△AEF≌△AED,可得EF=ED;(2)由旋转的性质可证∠FBE=90°,利用勾股定理和方程的思想可求EF的长.【详解】(1)∵∠BAC=90°,∠EAD=45°,∴∠BAE+∠DAC=45°,∵将△ADC绕点A顺时针旋转90°,得到△AFB,∴∠BAF=∠DAC,AF=AD,CD=BF,∠ABF=∠ACD=45°,∴∠BAF+∠BAE=45°=∠FAE,∴∠FAE=∠DAE,AD=AF,AE=AE,∴△AEF≌△AED(SAS),∴DE=EF(2)∵AB=AC=2,∠BAC=90°,∴BC=4,∵CD=1,∴BF=1,BD=3,即BE+DE=3,∵∠ABF=∠ABC=45°,∴∠EBF=90°,∴BF2+BE2=EF2,∴1+(3﹣EF)2=EF2,∴EF=【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,利用方程的思想解决问题是本题的关键.22、A′(﹣3,﹣3),B′(﹣2,﹣1),C′(﹣5,﹣1).【解析】试题分析:由于△ABC绕点O逆时针旋转180°得△A′B′C′,则△ABC和△A′B′C′关于原点中心对称,然后根据关于原点对称的点的坐标特征写出A′点、B′点、C′点的坐标,再描点即可.解:如图,△A′B′C′为所作,A′(﹣3,﹣3),B′(﹣2,﹣1),C′(﹣5,﹣1).考点:作图-旋转变换.23、大树的高度为(9+3)米【分析】根据矩形性质得出,再利用锐角三角函数的性质求出问题即可.【详解】解:如图,过点D作DG⊥BC于G,DH⊥CE于H,则四边形DHCG为矩形.故DG=CH,CG=DH,在中,∵∠DAH=30°,AD=6米,∴DH=3米,AH=3米,∴CG=3米,设BC米,在中,∠BAC=45°,∴AC米,∴DG=(3+)米,BG=()米,在中,∵BG=DG·tan30°,∴(3)×,解得:9+3,∴BC=(9+3)米.答:大树的高度为(9+3)米.【点睛】本题考查了仰角、坡角的定义,解直角三角形的应用,能借助仰角构造直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论