版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考一轮复习数学几何专题:四边形压轴训练(二)1.【实验操作】如图1是一张矩形纸片,点E在边AB上,把△BCE沿着直线CE对折,点B恰好落在对角线AC上的点F处.【性质探究】如图2,连接DF,若点E,F,D在同一直线上.(1)请写出图中与边DC相等的线段并说明理由.(2)若AE=2,求EF的长.【迁移应用】(3)如图3,延长EF交边AD于点G,若DG:AG=n,且AE=2,求BE的长(请用含n的代数式来表示).2.(1)问题提出如图①,△ACB和△DCE均为等边三角形,点A,D,E在同一条直线上,连接BE,线段AD,BE之间的数量关系为,∠AEB的度数为;(2)问题探究如图②,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)问题解决如图③,在正方形ABCD中,CD=2,若点P满足PD=2,且∠BPD=90°,请直接写出点A到BP的距离.3.定义:在四边形ABCD中,如果∠ABC+∠ADC=90°,那么我们把这样的四边形称为余对角四边形.【问题探索】问题:如图1,已知AC、BD是余对角四边形ABCD的对角线,AC=BC,∠ACB=60°.求证:AD2+DC2=BD2.探索:小明同学通过观察、分析、思考,对上述问题形成了如下想法:因为AC=BC,∠ACB=60°,所以△ABC是等边三角形,将△CBD绕点C顺时针方向旋转60°,得△CAE,连接DE.……请参考小明同学的想法,完成该问题的解答过程.【问题推广】已知AC、BD是余对角四边形ABCD的对角线,AC=k⋅BC,tan∠ACB=.(1)如图2,当k=1时,类比前面问题的解决,探究DA、DB、DC三者之间关系,并说明理由.(2)如图3,当AD=,BD=,DC=5时,则k的值为;【灵活运用】如图4,已知AC、BD是余对角四边形ABCD的对角线,AC=2,BC=,∠ACB=90°,∠ADB=30°,AD=.4.在平面直角坐标系xOy中,A(0,2),B(﹣2,0),连接AB,点C是线段OA上一点,以OC为边作正方形OCDE,如图1.(1)问题发现图1中,线段BE与AC的数量关系是,位置关系是.(2)问题探究如图2,将正方形OCDE绕点O顺时针旋转α(0°<α<360°),连接AC,BE,则(1)中的结论是否仍然成立?请说明理由.(3)拓展应用若OC=1,将正方形OCDE绕点O旋转,当B,E,C三点共线时,请直接写出线段AC的长.5.如图,四边形ABCD中,AD∥BC,∠A=∠D=90°,点E是AD的中点,连接BE,将△ABE沿BE折叠后得到△GBE,且点G在四边形ABCD内部,延长BG交DC于点F,连接EF.(1)求证:△EGF≌△EDF;(2)求证:BG=CD;(3)若点F是CD的中点,BC=8,求CD的长.6.(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE于点O,点G,F分别在边CD,AB上,GF⊥AE.求证:AE=FG;(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当时k=,若tan∠CGP=,GF=2,求CP的长.7.如图1,点E为正方形ABCD内一点,∠AEB=90°,现将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE′(点A的对应点为点C),延长AE交CE′于点F.(1)如图1,求证:四边形BEFE′是正方形;(2)连接DE,①如图2,若DA=DE,求证:F为CE′的中点;②如图3,若AB=15,CF=3,试求DE的长.8.在平面直角坐标系中,有正方形OBCD和正方形OEFG,E(2,0),B(0,2).(Ⅰ)如图①,求BE的长;(Ⅱ)将正方形OBCD绕点O逆时针旋转,得正方形OB′C′D′.①如图②,当点B′恰好落在线段D'G上时,求B'E的长;②将正方形OB'C'D'绕点O继续逆时针旋转,线段D'G与线段B'E的交点为H,求△GHE与△B'HD'面积之和的最大值,并求出此时点H的坐标(直接写出结果).9.已知,如图①将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,然后把纸片展平;再如图②,将图①中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的C'处,点B落在B'处,得到折痕EF,B'C'交AB于点M,C'F交DE于点N,再把纸片展平.(Ⅰ)如图①,填空:若AD=3,则ED的长为;(Ⅱ)如图②,连接EC',△MC′E是否一定是等腰三角形?若是,请给出证明;若不是,请说明理由;(Ⅲ)如图②,若AC'=2cm,DC′=4cm,求DN:EN的值.(直接写出结果即可)10.探究:如图1和图2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,直接写出线段BE、DF和EF之间的数量关系;②如图2,若∠B、∠D都不是直角,但满足∠B+∠D=180°,线段BE、DF和EF之间的结论是否仍然成立,若成立,请写出证明过程,若不成立,请说明理由.(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2.点D、E均在边BC边上,且∠DAE=45°,若BD=1,请直接写出DE的长.11.如图,在平面直角坐标系中,已知矩形OABC的顶点A在x轴上,顶点C在y轴上,OA=8,OC=4,点P为对角线AC上一动点,过点P作PQ⊥PB,PQ交x轴于点Q.(1)tan∠ACB=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围;如果不变,请求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,求PC的长.12.如图1,在矩形纸片ABCD中,AB=6,AD=10,折叠纸片使B点落在边AD上的点E处,折痕为PQ.过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形PBFE为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动.①当点Q与点C重合时(如图2),求菱形PBFE的边长;②若限定P、Q分别在边BA、BC上移动,菱形PBFE的面积有最值吗?若有,请写出,若没有,填“无”.最大值为;最小值为.13.如图,点E是正方形ABCD的边BA延长线上一点,连接DE,过点A作AH∥DE交CD于点H,交BC延长线于点F,点M、N分别是DE、AH的中点,连接AM、DN.(1)求证:四边形AMDN是菱形;(2)若S菱形MADN:S正方形ABCD=1:3,求CF:AB的值.14.矩形ABCD中,AB=CD=3cm,AD=BC=4cm,AC是对角线,动点P从点A出发沿AC方向向点C匀速运动,速度为1cm/s,动点Q从点C出发沿CD方向向点D匀速运动,速度为2cm/s.过点P作BC的垂线段PH,运动过程中始终保持PH与BC互相垂直,连接HQ交AC于点O.若点P和点Q同时出发,设运动时间为t(s)(0<t<1.5),解答下列问题.(1)求当t为何值时,四边形PHCQ为矩形;(2)是否存在一个时刻,使HQ与AC互相垂直?如果存在,请求出t值;如果不存在,请说明理由;(3)是否存在一个时刻,使矩形ABCD的面积是四边形PHCQ面积的,如果存在,请求出t值;如果不存在,请说明理由;(4)如果△COQ是等腰三角形,请直接写出所有符合题意的时刻:.15.问题情景:如图1,我们把对角线互相垂直的四边形叫做“垂美四边形”,按照此定义,我们学过的平行四边形中的菱形、正方形等都是“垂美四边形”,“筝形”也是“垂美四边形”.概念理解:(1)如图2,已知等腰梯形ABCD是“垂美四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程退场清算协议书大全
- 二零二四年度云服务合同:餐饮业云服务协议(04版)
- 保密协议在保护商业机密中的法律效力
- 住宅买卖简易协议书
- 迟到的悔过与未来承诺
- 水马购买协议合同格式样本
- 合作延续协议书
- 建筑公司员工管理表格
- 连锁加盟店合同的解除条件
- 精挑细选装饰公司合同
- 恒电位仪操作规程
- 数独骨灰级100题
- 全县蔬菜产业发展情况的调研报告 (3)
- 以体制机制改革激发创新活力-国家首批14家协同创新中心案例综述
- 车身部品件中英文对照表
- 威尼斯狂欢节长笛钢琴伴奏谱PierreAgricolaGeninC
- 炫彩招聘海报模板
- 8健康上网(五年级安全教育)讲课教案
- TGNET培训讲义
- 市政工程单位(子单位)工程观感质量检查记录附表43
- 品质控制流程图
评论
0/150
提交评论