届九2022年级数学每课时精讲精练系列专题2课题学习图案设计(人教版)_第1页
届九2022年级数学每课时精讲精练系列专题2课题学习图案设计(人教版)_第2页
届九2022年级数学每课时精讲精练系列专题2课题学习图案设计(人教版)_第3页
届九2022年级数学每课时精讲精练系列专题2课题学习图案设计(人教版)_第4页
届九2022年级数学每课时精讲精练系列专题2课题学习图案设计(人教版)_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基础知识1.认识图案的形成过程目前,我们学习了最基本的图形移、旋转和轴对称。利用这些图形变换的形式可以分析出组合图案的形成过程,在分析图案的形成过程时,要找出形成图案的“基本图案”,然后分析图案是由该“基本图案”经过怎样的变换得到的2.简单的图案设计利用平移、旋转(中心对称)、轴对称等图形变换,能够进行一些图案设计,也可以利用这些图形变换的组合进行图案设计。本节重点:会利用基本的图形变换:平移、轴对称、旋转或中心对称作图。本节难点:利用基本的图形变换:平移、轴对称、旋转或中心对称设计符合题意的图案。三、典例精析:例1:如图,将正方形图案绕中心O旋转180°后,得到的图案是()例2.将图中的正方形图案绕中心旋转180°后,得到的图案是()四、感悟中考1、(2014•山东烟台)如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1) B. (1,2) C. (1,3) D. (1,4)2、(2014•山东枣庄)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.【点评】考查了利用轴对称设计图案,此题要首先找到大正方形的对称轴,然后根据对称轴,进一步确定可以涂黑的正方形.3、(2014•湖南张家界)利设计出美丽图案,如图,在方格纸中有一个顶点都在格点上的四边形,且每个小正方形的边长都为1,完成下列问题:(1)图案设计:先作出四边形关于直线l成轴对称的图形,再将你所作的图形和原四边形绕0点按顺时针旋转90°;(2)完成上述图案设计后,可知这个图案的面积等于.【点评】此题主要考查了利用轴对称和旋转作图,以及求不规则图形的面积,关键是在作图时,找出关键点的对称点.四、专项训练。(一)基础练习1、(2013•盐城)如图①是方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()种种种种【点评】本题考查了学生实际操作能力,用到了图形的旋转及轴对称的知识,需要灵活掌握.2、(1)如图中如何通过平移或旋转这两种变换,由图形A得到图形B,再由图形B得到图形C(对于平移变换要求回答出平移的方向和平移的距离;对于旋转变换要求回答出旋转中心、旋转方向和旋转角度);(2)如图1,如果点P、P3的坐标分别为(0,0)、(2,1),写出点P2的坐标;(3)图2是某设计师设计图请你运用旋转变换的方法,在方格纸中将图形绕点O顺时针依次旋转90°、180°、270°,依次画出旋转后所得到的图形,你会得到一个美丽的图案,但涂阴影时不要涂错了位置,否则不会出现理想的效果,你来试一试吧!注:方格纸中的小正方形的边长为1个单位长度.3、(2014年湖北荆门)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()种种种种4、(2014年贵州黔东南)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A. B.1.5 C. D.1∴∠C=90°﹣60°=30°,提升练习1、(2014•四川巴中)如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(﹣2,4),B(﹣2,1),C(﹣5,2).(1)请画出△ABC关于x轴对称的△A1B1C1.(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C2,请画出△A2B2C2.(3)求△A1B1C1与△A2B2C2的面积比,即:=(不写解答过程,直接写出结果).进而得出答案.2.(2014•山西)阅读以下材料,并按要求完成相应的任务.几何中,平行四边形、矩方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉,生活中还有一种特殊的四边形﹣﹣筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似.定义:两组邻边分别相等的四边形,称之为筝形,如图,四边形ABCD是筝形,其中AB=AD,CB=CD判定:①两组邻边分别相等的四边形是筝形②有一条对角线垂直平分另一条对角线的四边形是筝形显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论