【北师大版】八年级数学上期中试卷附答案_第1页
【北师大版】八年级数学上期中试卷附答案_第2页
【北师大版】八年级数学上期中试卷附答案_第3页
【北师大版】八年级数学上期中试卷附答案_第4页
【北师大版】八年级数学上期中试卷附答案_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、选择题1.如图,在等腰三角形中,是的中点,交于点,已知,则的长为()A.B.C.D.2.如图,已知,则,点在边上,,点、在边上,,若为()A.D.3.若,为等腰A.11B.13C.11或13D.9或15B.C.的两边,且满足,则的周长为()4.如图,中,,,则等于()A.B.C.D.5.如图,在和,这个条件是()中,,添加下列一个条件后,仍然不能证明A.B.C.D.6.如图,AB=AC,AD=AE,∠A=105°,∠D=25°,则∠ABE等于()A.65°B.60°C.55°D.50°7.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.2.5B.3C.3.5D.48.如图,AD是的高,,E是AD上的一点,,,BE的延长线交AC于点F,则EF的长为()A.B.C.D.39.若一个三角形的三边长分别为3,7,x,则x的值可能是()A.6B.3C.2D.1110.下列说法正确的是()A.射线和射线是同一条射线B.连接两点的线段叫两点间的距离C.两点之间,直线最短D.七边形的对角线一共有14条11.正十边形每个外角等于()A.36°B.72°C.108°D.150°12.如图,,,则的度数是()A.75°B.60°C.55°D.50°二、填空题13.平面直角坐标系中,已知A(8,0),△AOP为等腰三角形,且△AOP的面积为16,则满足条件的P点个数是______.14.在平面直角坐标系中,为坐标原点,,在轴上确定一点,使为等腰三角形,则符合条件的等腰三角形的顶角度数为______.15.如图,D,E分别是AB,AC上的点,AD=AE,请添加一个条件,使得ABE≌ACD.这个条件可以为_____(只填一个条件即可).16.如图所示,在中,D是(不再添其他线段,不再标注或使用其他字母),并给出证明.你添加的条件是的中点,点A、F、D、E在同一直线上.请添加一个条件,使______17.如图,已知点,一个以为顶点的角绕点旋转,角的两边分别交轴正半轴,轴负半轴于、,连接.当△直角三角形时,点的坐标是________.18.如图是一块正多边形的碎瓷片,经测得,则这个正多边形的边数是_________.19.如图,已知,则是______的边上的中线,若,的周长比的周长多.20.一个三角形的三个内角的度数的比是1∶2∶3,这个三角形是_________________三角形.(填锐角、直角或钝角)三、解答题21.如图,在△ABC中,AB=AC.过点A作BC的平行线交∠ABC的角平分线于点D,连接CD.(1)求证:△ACD为等腰三角形.(2)若∠BAD=140°,求∠BDC的度数.22.如图,在中,,其两边分别交,,,,垂足为,且,于点,.(1)求证:(2)若是等边三角形;,求的长;.(3)求证:23.(阅读理解)课外兴趣小组活动时,老师提出了如下问题:如图1,中,若,,求到点,使边上的中线的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长,请根据小明的方法思考:(1)由已知和作图能得到≌的理由是______.(2)求得的取值范围是______.(感悟)解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(问题解决)(3)如图2,在中,点是的中点,点在边上,点在边上,若,求证:.24.在中,是的高,,(1)尺规作图:作的角平分线(2)求的大小.25.如图,在中,为高,为的平分线,若,,求的度数.26.已知:.(1)如图1,求证:(2)如图2,当.时,请直接写出与互余的角.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE,然后根据等边对等角可得∠ECD=∠A,再根据三角形内角和等于180°求出∠B=72°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BEC=72°,然后根据等角对等边的性质和勾股定理解答.【详解】解:∵D是的中点,交于点,∴ED垂直平分AC,∴AE=CE,∴∠ECD=∠A,∵∠A=36°,∴∠ECD=36°,∵AB=AC,∠A=36°,∴∠B=(180°-36°)=72°,∵∠ECD=∠A=36°,∴∠BEC=∠ECD+∠A=36°+36°=72°,∴∠B=∠BEC,∴BC=CE,∵AE=CE,ED⊥AC,∴CD==3,在Rt△CED中,CE=∴BC=,故选A.【点睛】本题考查了等腰三角形三线合一的性质,勾股定理,线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角以及等角对等边的性质,熟练掌握有关性质是解题的关键.2.B解析:B【分析】过P作PC垂直于MN,由等腰三角形三线合一性质得到MC=CN,求出MC的长,在直角三角形OPC中,利用30度角所对的直角边等于斜边的一半求出OC的长,由OC-MC求出OM的长即可.【详解】解:过P作PC⊥MN,∵PM=PN,∴C为MN中点,即MC=NC=MN=1,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC=OP=4,则OM=OC-MC=4-1=3cm,故选:B.【点睛】此题考查了含30度角的直角三角形,以及等腰三角形的性质,熟练掌握性质是解本题的关键.3.C解析:C【分析】根据非负数的意义列出关于a、b的方程并求出a、b的值,再根据b是腰长和底边长两种情况讨论求解.【详解】解:根据题意得a-3=0,b-5=0,解得a=3,b=5,(1)若3是腰长,则三角形的三边长为:3、3、5,能组成三角形,周长为:3+3+5=11;(2)若3是底边长,则三角形的三边长为:3、5、5,能组成三角形,周长为3+5+5=13.故选:C.【点睛】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形作出判断.4.A解析:A【分析】利用AD=AC,求出∠ADC=∠C=,利用AD=AB,即可求得∠B=∠BAD.【详解】∵AD=AC,∴∠ADC=∠C,∵,∴∠ADC=∠C=∵AD=AB,,∴∠B=∠BAD,故选:A.【点睛】此题考查等边对等角的性质,三角形的内角和定理,三角形的外角性质,熟练掌握等腰三角形的性质是解题的关键.5.D解析:D【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【详解】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;添加BC=EF,利用SAS可得△ABC≌△DEF;添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;添加,不符合任何一个全等判定定理,不能证明△ABC≌△DEF;故选:D.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.6.D解析:D【分析】依据SAS即可得判定△ABE≌△ACD,再根据全等三角形的性质,得出∠D=∠E=25°,由三角形内角和定理可求出答案.【详解】解:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠D=∠E,∵∠D=25°,∴∠E=25°,∴∠ABE=180°﹣∠A﹣∠E=180°﹣105°﹣25°=50°.故选:D.【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,熟练掌握全等三角形的判定与性质是解题的关键.7.B解析:B【分析】作DH⊥AC于H,如图,利用角平分线的性质得DH=DE=2,根据三角形的面积公式得×2×AC+×2×4=7,于是可求出AC的值.【详解】解:作DH⊥AC于H,如图,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DH⊥AC,∴DH=DE=2,∵S△ABC=S△ADC+S△ABD,∴×2×AC+×2×4=7,∴AC=3.故选:B.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.这里的距离是指点到角的两边垂线段的长.8.A解析:A【分析】先证明≌,得,,再证,然后由三角形面积关系求出,则.【详解】解:是的高,,,在和中,,≌,,,,,,,的面积的面积的面积,,,即,,,故选:A.【点睛】本题考查了全等三角形的判定和性质、直角三角形的性质以及三角形面积等知识;证明三角形全等是解题的关键.9.A解析:A【分析】根据三角形的三边关系列出不等式,即可求出x的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x,∴7-3<x<7+3,即4<x<10,四个选项中,A中,4<6<10,符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.10.D解析:D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A、射线AB和射线BA是不同的射线,故本选项不符合题意;B、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C、两点之间,线段最短,故本选项不符合题意;D、七边形的对角线一共有条,正确故选:D【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键.11.A解析:A【分析】根据正十边形的外角和等于【详解】,每一个外角等于多边形的外角和除以边数,即可得解.,∴正五边形的每个外角等于故选:A.,【点睛】本题考查了正多边形的外角和、边数、外角度数之间的关系,熟记正多边形以上三者之间的关系是解题的关键.12.D解析:D【分析】根据邻补角的定义可求得【详解】和,再根据三角形内角和为180°即可求出.解:,,,..故选D.【点睛】本题考查了邻补角和三角形内角和定理,识记三角形内角和为180°是解题的关键.二、填空题13.10【分析】使△AOP为等腰三角形只需分两种情况考虑:OA当底边或OA当腰当OA是底边时有2个点;当OA是腰时有8个点即可得出答案【详解】∵A(80)∴OA=8设△AOP的边OA上的高是h则×8×h解析:10【分析】使△AOP为等腰三角形,只需分两种情况考虑:OA当底边或OA当腰.当OA是底边时,有2个点;当OA是腰时,有8个点,即可得出答案.【详解】∵A(8,0),∴OA=8,设△AOP的边OA上的高是h,则×8×h=16,解得:h=4,在x轴的两侧作直线a和直线b都和x轴平行,且到x轴的距离都等于4,如图:①以A为圆心,以8为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,②以O为圆心,以8为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,③作AO的垂直平分线分别交直线a、b于一点,即共2个点符合,其中,没有重复的点,∴4+4+1+1=10.故选:B.【点睛】本题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.14.90°45°135°【分析】此题应该分情况讨论以OA为腰或底分别讨论当A是顶角顶点时P是以A为圆心以OA为半径的圆与x轴的交点共有1个当O是顶角顶点时P是以O为圆心以OA为半径的圆与x轴的交点共有2解析:90°,45°,135°【分析】此题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,共有2个,若OA是底边时,P是OA的中垂线与x轴的交点,有1个,进而求出对应等腰三角形的顶角度数,即可.【详解】(1)若AO作为腰时,有两种情况,①当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,此时,顶角度数为:90°;②当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,此时,顶角度数为:45°或135°;(2)若OA是底边时,P是OA的中垂线与x轴的交点,此时,顶角度数为:90°.综上所述,符合条件的等腰三角形的顶角度数为:90°,45°,135°,故答案是:90°,45°,135°.【点睛】此题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.15.∠B=∠C(或∠ADC=∠AEB或AB=AC)【分析】根据已知条件知两个三角形已经具有∠A=∠AAD=AE两个条件对应相等故再添加一组对应角相等或是AB=AC即可得到ABE≌ACD【详解】∵∠A=∠解析:∠B=∠C(或∠ADC=∠AEB或AB=AC)【分析】根据已知条件知两个三角形已经具有∠A=∠A,AD=AE两个条件对应相等,故再添加一组对应角相等或是AB=AC即可得到ABE≌ACD.【详解】∵∠A=∠A,AD=AE,∴当∠B=∠C时,可利用AAS证明ABE≌ACD;当∠ADC=∠AEB时,可利用ASA证明ABE≌ACD;当AB=AC时,可利用SAS证明ABE≌ACD;故答案为:∠B=∠C(或∠ADC=∠AEB或AB=AC).【点睛】此题考查添加一个条件证明三角形全等,熟记三角形全等的判定定理是解题的关键.16.ED=FD(答案不唯一∠E=∠CFD或∠DBE=∠DCF)【分析】根据三角形全等的判定方法SAS或AAS或ASA定理添加条件然后证明即可【详解】解:∵D是的中点∴BD=DC①若添加ED=FD在△BD解析:ED=FD(答案不唯一,∠E=∠CFD或∠DBE=∠DCF)【分析】根据三角形全等的判定方法SAS或AAS或ASA定理添加条件,然后证明即可.【详解】解:∵D是∴BD=DC的中点,①若添加ED=FD在△BDE和△CDF中,,∴△BDE≌△CDF(SAS);②若添加∠E=∠CFD在△BDE和△CDF中,,∴△BDE≌△CDF(AAS);③若添加∠DBE=∠DCF在△BDE和△CDF中,,∴△BDE≌△CDF(ASA);故答案为:ED=FD(答案不唯一,∠E=∠CFD或∠DBE=∠DCF).【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.17.或【分析】根据等腰三角形的性质作辅助线构造全等三角形得到对应线段相等即可得到结论【详解】①如图所示:∴∵∴∵∴∴在△和中∴△△FDE∴∴②当时同①的方法有:∴综上所述满足条件的点坐标为或故答案为:或解析:或【分析】根据等腰三角形的性质,作辅助线构造全等三角形,得到对应线段相等即可得到结论.【详解】①如图所示:,∴,,∵∴∵,,,∴,∴,在△和中,∴△∴△FDE,,,∴.②当时,同①的方法有:,,∴,综上所述,满足条件的点坐标为或故答案为:【点睛】或本题考查三角形全等性质和判定、等腰直角三角形的性质,注意直角三角形按角分类讨论分三种情况,不要漏解.18.12【分析】根据瓷片为正多边形及可知正多边形的外角为进而可求得正多边形的边数【详解】如图延长BC可知∠1为正多边形的外角∵瓷片为正多边形∴AD=DB=BC∠ADB=∠DBC∴四边形ACBD为等腰梯形解析:12【分析】根据瓷片为正多边形及【详解】,可知正多边形的外角为,进而可求得正多边形的边数.如图,延长BC,可知∠1为正多边形的外角,∵瓷片为正多边形,∴AD=DB=BC,∠ADB=∠DBC,∴四边形ACBD为等腰梯形,∴BD∥AC,∴∠1=,∴正多边形的边数为:,故答案为:12.【点睛】本题考查正多边形的外角和,掌握相关知识点是解题的关键.19.10【分析】依据AE是△ABC的边BC上的中线可得CE=BE再根据AE=AE△ACE的周长比△AEB的周长多2cm即可得到AC的长【详解】解:∵AE是△ABC的边BC上的中线∴CE=BE又∵AE=A解析:10【分析】依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB的周长多2cm,即可得到AC的长.【详解】解:∵AE是△ABC的边BC上的中线,∴CE=BE,又∵AE=AE,△ACE的周长比△AEB的周长多2cm,∴AC-AB=2cm,即AC-8=2cm,∴AC=10cm,故答案为:10;【点睛】本题考查了三角形的角平分线、中线和高,求出两个三角形的周长的差等于两边的差是解题的关键.20.直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数即可得出答案【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3=90°答:这个三角形中最大的角是直角故答案为:直角解析:直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数,即可得出答案.【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3=90°,答:这个三角形中最大的角是直角.故答案为:直角.【点睛】本题考查了三角形内角和定理的应用,能求出这个三角形的最大内角的度数是解此题的关键,注意:三角形的内角和等于180°.三、解答题21.(1)证明见解析;(2).【分析】(1)根据平行线的性质和角平分线的定义可得∠ADB=∠ABD,从而可得AB=AD,再依据等量代换即可得出结论;(2)根据等腰三角形等边对等角可求得∠ADB=20°,再依据角平分线的性质、平行线的性质和等腰三角形等边对等角求得,最后利用角的和差即可求得结论.【详解】解:(1)证明:∵AD∥BC,∴∠ADB=∠DBC,∵BD为∠ABC的平分线,∴∠ABD=∠DBC,∴∠ADB=∠ABD,∴AB=AD,∵AB=AC,∴AC=AD,即△ACD为等腰三角形;(2)∵AB=AD,∠BAD=140°,∴∠ADB=∠ABD==20°,∴∠ABC=∠ABD+∠DBC=2∠ABD=40°,∵AB=AC,∴∠ACB=∠ABC=40°,∵AD∥BC,∴∠DAC=∠ACB=40°,∵AC=AD,∴,∴.【点睛】本题考查等腰三角形的性质和判定,平行线的性质,角平分线的有关证明.(1)中需正确识别角平分线与平行线所构成的等腰三角形;(2)中能根据等边对等角依次计算角度是解题关键.22.(1)见解析;(2);(3)见解析【分析】(1)连接BD由等腰三角形的性质和已知条件得出∠BAD=∠DAC=×120°=60°,再由AD=AB,即可得出结论;(2)由等边三角形三线合一可得,,可得,即可求解;(3)由△ABD是等边三角形,得出BD=AD,∠ABD=∠ADB=60°,证出∠BDE=∠ADF,由ASA证明△BDE≌△ADF,得出AF=BE,即可求解.【详解】证明:(1),,,,,,是等边三角形.(2)(3)是等边三角形,,,,,即是等三角形,,;,,,即在.和中,,,,,,,.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.23.(1);(2);(3)见解析【分析】(1)根据AD=DE,∠ADC=∠BDE,BD=DC推出△ADC和△EDB全等即可;(2)根据全等得出BE=AC=6,AE=2AD,由三角形三边关系定理得出8-6<2AD<8+6,求出即可;(3)延长至点,使,连接、,证明≌,得到,根据三角形三边关系解答即可.【详解】(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论