版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在△ABC中,点M是边BC的中点,将△ABM沿着AM翻折成△AB'M,且点B'不在平面AMC内,点P是线段B'C上一点.若二面角P-AM-B'与二面角P-AM-C的平面角相等,则直线AP经过△AB'CA.重心 B.垂心 C.内心 D.外心2.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A.48 B.72 C.90 D.963.已知双曲线:(,)的右焦点与圆:的圆心重合,且圆被双曲线的一条渐近线截得的弦长为,则双曲线的离心率为()A.2 B. C. D.34.设全集,集合,则=()A. B. C. D.5.执行如图所示的程序框图,则输出的结果为()A. B. C. D.6.要得到函数的图象,只需将函数的图象A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度7.已知复数,满足,则()A.1 B. C. D.58.已知当,,时,,则以下判断正确的是A. B.C. D.与的大小关系不确定9.已知,,,,.若实数,满足不等式组,则目标函数()A.有最大值,无最小值 B.有最大值,有最小值C.无最大值,有最小值 D.无最大值,无最小值10.在等差数列中,,,若(),则数列的最大值是()A. B.C.1 D.311.已知集合,B={y∈N|y=x﹣1,x∈A},则A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}12.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,则__________.14.实数,满足,如果目标函数的最小值为,则的最小值为_______.15.已知,则_____16.内角,,的对边分别为,,,若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xoy中,曲线C的方程为.以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)写出曲线C的极坐标方程,并求出直线l与曲线C的交点M,N的极坐标;(2)设P是椭圆上的动点,求面积的最大值.18.(12分)已知,分别是椭圆:的左,右焦点,点在椭圆上,且抛物线的焦点是椭圆的一个焦点.(1)求,的值:(2)过点作不与轴重合的直线,设与圆相交于A,B两点,且与椭圆相交于C,D两点,当时,求△的面积.19.(12分)设的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,求的取值范围.20.(12分)已知函数,为的导数,函数在处取得最小值.(1)求证:;(2)若时,恒成立,求的取值范围.21.(12分)在以ABCDEF为顶点的五面体中,底面ABCD为菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,点G为CD中点,平面EAD⊥平面ABCD.(1)证明:BD⊥EG;(2)若三棱锥,求菱形ABCD的边长.22.(10分)随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1200名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:分组频数(单位:名)使用“余额宝”使用“财富通”使用“京东小金库”30使用其他理财产品50合计1200已知这1200名市民中,使用“余额宝”的人比使用“财富通”的人多160名.(1)求频数分布表中,的值;(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为.若在1200名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取7人,然后从这7人中随机选取2人,假设这2人中每个人理财的资金有10000元,这2名市民2018年理财的利息总和为,求的分布列及数学期望.注:平均年化收益率,也就是我们所熟知的利息,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据题意P到两个平面的距离相等,根据等体积法得到SΔPB'M【详解】二面角P-AM-B'与二面角P-AM-C的平面角相等,故P到两个平面的距离相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P为CB'中点.故选:A.【点睛】本题考查了二面角,等体积法,意在考查学生的计算能力和空间想象能力.2、D【解析】因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加任何比赛①当甲参加另外3场比赛时,共有•=72种选择方案;②当甲学生不参加任何比赛时,共有=24种选择方案.综上所述,所有参赛方案有72+24=96种故答案为:96点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题.3、A【解析】
由已知,圆心M到渐近线的距离为,可得,又,解方程即可.【详解】由已知,,渐近线方程为,因为圆被双曲线的一条渐近线截得的弦长为,所以圆心M到渐近线的距离为,故,所以离心率为.故选:A.【点睛】本题考查双曲线离心率的问题,涉及到直线与圆的位置关系,考查学生的运算能力,是一道容易题.4、A【解析】
先求得全集包含的元素,由此求得集合的补集.【详解】由解得,故,所以,故选A.【点睛】本小题主要考查补集的概念及运算,考查一元二次不等式的解法,属于基础题.5、D【解析】循环依次为直至结束循环,输出,选D.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.6、D【解析】
先将化为,根据函数图像的平移原则,即可得出结果.【详解】因为,所以只需将的图象向右平移个单位.【点睛】本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型.7、A【解析】
首先根据复数代数形式的除法运算求出,求出的模即可.【详解】解:,,故选:A【点睛】本题考查了复数求模问题,考查复数的除法运算,属于基础题.8、C【解析】
由函数的增减性及导数的应用得:设,求得可得为增函数,又,,时,根据条件得,即可得结果.【详解】解:设,则,即为增函数,又,,,,即,所以,所以.故选:C.【点睛】本题考查了函数的增减性及导数的应用,属中档题.9、B【解析】
判断直线与纵轴交点的位置,画出可行解域,即可判断出目标函数的最值情况.【详解】由,,所以可得.,所以由,因此该直线在纵轴的截距为正,但是斜率有两种可能,因此可行解域如下图所示:由此可以判断该目标函数一定有最大值和最小值.故选:B【点睛】本题考查了目标函数最值是否存在问题,考查了数形结合思想,考查了不等式的性质应用.10、D【解析】
在等差数列中,利用已知可求得通项公式,进而,借助函数的的单调性可知,当时,取最大即可求得结果.【详解】因为,所以,即,又,所以公差,所以,即,因为函数,在时,单调递减,且;在时,单调递减,且.所以数列的最大值是,且,所以数列的最大值是3.故选:D.【点睛】本题考查等差数列的通项公式,考查数列与函数的关系,借助函数单调性研究数列最值问题,难度较易.11、A【解析】
解出集合A和B即可求得两个集合的并集.【详解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故选:A.【点睛】此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素.12、A【解析】
由折线图找出水、电、交通开支占总开支的比例,再计算出水费开支占水、电、交通开支的比例,相乘即可求出水费开支占总开支的百分比.【详解】水费开支占总开支的百分比为.故选:A【点睛】本题考查折线图与柱形图,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】解:由题意可知:.14、【解析】
作出不等式组对应的平面区域,利用目标函数的最小值为,确定出的值,进而确定出C点坐标,结合目标函数几何意义,从而求得结果.【详解】先做的区域如图可知在三角形ABC区域内,由得可知,直线的截距最大时,取得最小值,此时直线为,作出直线,交于A点,由图象可知,目标函数在该点取得最小值,所以直线也过A点,由,得,代入,得,所以点C的坐标为.等价于点与原点连线的斜率,所以当点为点C时,取得最小值,最小值为,故答案为:.【点睛】该题考查的是有关线性规划的问题,在解题的过程中,注意正确画出约束条件对应的可行域,根据最值求出参数,结合分式型目标函数的意义求得最优解,属于中档题目.15、【解析】
化简得,利用周期即可求出答案.【详解】解:,∴函数的最小正周期为6,∴,,故答案为:.【点睛】本题主要考查三角函数的性质的应用,属于基础题.16、【解析】∵,∴,即,∴,∴.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,;(2).【解析】
(1)利用公式即可求得曲线的极坐标方程;联立直线和曲线的极坐标方程,即可求得交点坐标;(2)设出点坐标的参数形式,将问题转化为求三角函数最值的问题即可求得.【详解】(1)曲线的极坐标方程:联立,得,又因为都满足两方程,故两曲线的交点为,.(2)易知,直线.设点,则点到直线的距离(其中).面积的最大值为.【点睛】本题考查极坐标方程和直角坐标方程之间的相互转化,涉及利用椭圆的参数方程求面积的最值问题,属综合中档题.18、(1);(2).【解析】
(1)由已知根据抛物线和椭圆的定义和性质,可求出,;(2)设直线方程为,联立直线与圆的方程可以求出,再联立直线和椭圆的方程化简,由根与系数的关系得到结论,继而求出面积.【详解】(1)焦点为F(1,0),则F1(1,0),F2(1,0),,解得,=1,=1,(Ⅱ)由已知,可设直线方程为,,联立得,易知△>0,则===因为,所以=1,解得联立,得,△=8>0设,则【点睛】本题主要考查抛物线和椭圆的定义与性质应用,同时考查利用根与系数的关系,解决直线与圆,直线与椭圆的位置关系问题.意在考查学生的数学运算能力.19、(1)(2)【解析】
(1)利用正弦定理化简已知条件,由此求得的值,进而求得的大小.(2)利用正弦定理和两角差的正弦公式,求得的表达式,进而求得的取值范围.【详解】(1)由题设知,,即,所以,即,又所以.(2)由题设知,,即,又为锐角三角形,所以,即所以,即,所以的取值范围是.【点睛】本小题主要考查利用正弦定理解三角形,考查利用角的范围,求边的比值的取值范围,属于中档题.20、(1)见解析;(2).【解析】
(1)对求导,令,求导研究单调性,分析可得存在使得,即,即得证;(2)分,两种情况讨论,当时,转化利用均值不等式即得证;当,有两个不同的零点,,分析可得的最小值为,分,讨论即得解.【详解】(1)由题意,令,则,知为的增函数,因为,,所以,存在使得,即.所以,当时,为减函数,当时,为增函数,故当时,取得最小值,也就是取得最小值.故,于是有,即,所以有,证毕.(2)由(1)知,的最小值为,①当,即时,为的增函数,所以,,由(1)中,得,即.故满足题意.②当,即时,有两个不同的零点,,且,即,若时,为减函数,(*)若时,为增函数,所以的最小值为.注意到时,,且此时,(ⅰ)当时,,所以,即,又,而,所以,即.由于在下,恒有,所以.(ⅱ)当时,,所以,所以由(*)知时,为减函数,所以,不满足时,恒成立,故舍去.故满足条件.综上所述:的取值范围是.【点睛】本题考查了函数与导数综合,考查了利用导数研究函数的最值和不等式的恒成立问题,考查了学生综合分析,转化划归,分类讨论,数学运算能力,属于较难题.21、(1)详见解析;(2).【解析】
(1)取中点,连,可得,结合平面EAD⊥平面ABCD,可证平面ABCD,进而有,再由底面是菱形可得,可得,可证得平面,即可证明结论;(2)设底面边长为,由EFAB,AB=2EF,,求出体积,建立的方程,即可求出结论.【详解】(1)取中点,连,底面ABCD为菱形,,,平面EAD⊥平面ABCD,平面平面平面,平面平面,底面ABCD为菱形,,为中点,,平面,平面平面,;(2)设菱形ABCD的边长为,则,,,,,所以菱形ABCD的边长为.【点睛】本题考查线线垂直的证明和椎体的体积,注意空间中垂直关系之间的相互转化,体积问题要熟练应用等体积方法,属于中档题.22、(1);(2)680元.【解析】
(1)根据题意,列方程,然后求解即可(2)根据题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 交通事故赔偿金协议书七篇
- 鲍恩病病因介绍
- 劳务派遣书面协议书七篇
- 《数据资产入表合规规范指南》(征求意见稿)
- (参考)雕刻工艺品投资项目可行性研究报告
- 2023年天津市南开区高考语文二模试卷
- 《廉政公署专题》课件
- 电工培训课件之跌落熔丝的操作
- 《广告创意文案设计》课件
- 内蒙古呼伦贝尔市阿荣旗2023-2024学年七年级上学期期末考试数学试卷(含答案)
- 隐蔽型无追索权国内保理合同模板范本
- DBJT 13-316-2019 聚合物透水混凝土路面技术规程
- 精选四川省2023年普通高中学业水平考试物理学科实验操作考查试题
- 数字孪生技术在智慧工厂中的应用解决方案
- 《卵巢肿瘤》ppt课件(PPT 101页)
- 洪水预报讲座20150628
- 部编版六年级上册语文非连续性文本阅读
- 企业现场6S改进方案
- 咬合桩施工工艺
- 汽轮机课程设计
- CRTSⅠ型双块式无砟轨道施工技术
评论
0/150
提交评论