版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为()A. B. C. D.2.已知α,β是两平面,l,m,n是三条不同的直线,则不正确命题是()A.若m⊥α,n//α,则m⊥n B.若m//α,n//α,则m//nC.若l⊥α,l//β,则α⊥β D.若α//β,lβ,且l//α,则l//β3.设复数z=,则|z|=()A. B. C. D.4.已知定义在上的偶函数满足,且在区间上是减函数,令,则的大小关系为()A. B.C. D.5.已知是定义在上的奇函数,且当时,.若,则的解集是()A. B.C. D.6.已知复数满足,且,则()A.3 B. C. D.7.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:)A.48 B.36 C.24 D.128.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则9.已知函数,且的图象经过第一、二、四象限,则,,的大小关系为()A. B.C. D.10.已知双曲线的左、右焦点分别为、,抛物线与双曲线有相同的焦点.设为抛物线与双曲线的一个交点,且,则双曲线的离心率为()A.或 B.或 C.或 D.或11.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为()A.2 B.5 C. D.12.函数(其中是自然对数的底数)的大致图像为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.定义在R上的函数满足:①对任意的,都有;②当时,,则函数的解析式可以是______________.14.设数列为等差数列,其前项和为,已知,,若对任意都有成立,则的值为__________.15.已知为椭圆上的一个动点,,,设直线和分别与直线交于,两点,若与的面积相等,则线段的长为______.16.已知全集,集合,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且过点.为椭圆的右焦点,为椭圆上关于原点对称的两点,连接分别交椭圆于两点.⑴求椭圆的标准方程;⑵若,求的值;⑶设直线,的斜率分别为,,是否存在实数,使得,若存在,求出的值;若不存在,请说明理由.18.(12分)已知,,,,证明:(1);(2).19.(12分)某工厂,两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,生产线生产的产品为合格品的概率分别为和.(1)从,生产线上各抽检一件产品,若使得至少有一件合格的概率不低于,求的最小值.(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的作为的值.①已知,生产线的不合格产品返工后每件产品可分别挽回损失元和元.若从两条生产线上各随机抽检件产品,以挽回损失的平均数为判断依据,估计哪条生产线挽回的损失较多?②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件分别获利元、元、元,现从,生产线的最终合格品中各随机抽取件进行检测,结果统计如下图;用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估算该厂产量件时利润的期望值.20.(12分)已知正数x,y,z满足xyzt(t为常数),且的最小值为,求实数t的值.21.(12分)已知,如图,曲线由曲线:和曲线:组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.(Ⅰ)若,求曲线的方程;(Ⅱ)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;(Ⅲ)对于(Ⅰ)中的曲线,若直线过点交曲线于点,求面积的最大值.22.(10分)已知实数x,y,z满足,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,设,得,求出的值,即得解.【详解】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,所以,.设,则,又.故,所以.故选:D【点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.2、B【解析】
根据线面平行、线面垂直和空间角的知识,判断A选项的正确性.由线面平行有关知识判断B选项的正确性.根据面面垂直的判定定理,判断C选项的正确性.根据面面平行的性质判断D选项的正确性.【详解】A.若,则在中存在一条直线,使得,则,又,那么,故正确;B.若,则或相交或异面,故不正确;C.若,则存在,使,又,则,故正确.D.若,且,则或,又由,故正确.故选:B【点睛】本小题主要考查空间线线、线面和面面有关命题真假性的判断,属于基础题.3、D【解析】
先用复数的除法运算将复数化简,然后用模长公式求模长.【详解】解:z====﹣﹣,则|z|====.故选:D.【点睛】本题考查复数的基本概念和基本运算,属于基础题.4、C【解析】
可设,根据在上为偶函数及便可得到:,可设,,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、、的大小关系,从而得到的大小关系.【详解】解:因为,即,又,设,根据条件,,;若,,且,则:;在上是减函数;;;在上是增函数;所以,故选:C【点睛】考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题.5、B【解析】
利用函数奇偶性可求得在时的解析式和,进而构造出不等式求得结果.【详解】为定义在上的奇函数,.当时,,,为奇函数,,由得:或;综上所述:若,则的解集为.故选:.【点睛】本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在处有意义时,的情况.6、C【解析】
设,则,利用和求得,即可.【详解】设,则,因为,则,所以,又,即,所以,所以,故选:C【点睛】本题考查复数的乘法法则的应用,考查共轭复数的应用.7、C【解析】
由开始,按照框图,依次求出s,进行判断。【详解】,故选C.【点睛】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。8、C【解析】
在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或.【详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,,则与相交或平行,故A错误;在B中,若,,则或,故B错误;在C中,若,,则由线面垂直的判定定理得,故C正确;在D中,若,,则与平行或,故D错误.故选C.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.9、C【解析】
根据题意,得,,则为减函数,从而得出函数的单调性,可比较和,而,比较,即可比较.【详解】因为,且的图象经过第一、二、四象限,所以,,所以函数为减函数,函数在上单调递减,在上单调递增,又因为,所以,又,,则|,即,所以.故选:C.【点睛】本题考查利用函数的单调性比较大小,还考查化简能力和转化思想.10、D【解析】
设,,根据和抛物线性质得出,再根据双曲线性质得出,,最后根据余弦定理列方程得出、间的关系,从而可得出离心率.【详解】过分别向轴和抛物线的准线作垂线,垂足分别为、,不妨设,,则,为双曲线上的点,则,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故选:D.【点睛】本题考查了双曲线离心率的求解,涉及双曲线和抛物线的简单性质,考查运算求解能力,属于中档题.11、D【解析】
根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,,,故最大面的面积为.选D.【点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.12、D【解析】由题意得,函数点定义域为且,所以定义域关于原点对称,且,所以函数为奇函数,图象关于原点对称,故选D.二、填空题:本题共4小题,每小题5分,共20分。13、(或,答案不唯一)【解析】
由可得是奇函数,再由时,可得到满足条件的奇函数非常多,属于开放性试题.【详解】在中,令,得;令,则,故是奇函数,由时,,知或等,答案不唯一.故答案为:(或,答案不唯一).【点睛】本题考查抽象函数的性质,涉及到由表达式确定函数奇偶性,是一道开放性的题,难度不大.14、【解析】
由已知条件得出关于首项和公差的方程组,解出这两个量,计算出,利用二次函数的基本性质求出的最大值及其对应的值,即可得解.【详解】设等差数列的公差为,由,解得,.所以,当时,取得最大值,对任意都有成立,则为数列的最大值,因此,.故答案为:.【点睛】本题考查等差数列前项和最值的计算,一般利用二次函数的基本性质求解,考查计算能力,属于中等题.15、【解析】
先设点坐标,由三角形面积相等得出两个三角形的边之间的比例关系,这个比例关系又可用线段上点的坐标表示出来,从而可求得点的横坐标,代入椭圆方程得纵坐标,然后可得.【详解】如图,设,,,由,得,由得,∴,解得,又在椭圆上,∴,,∴.故答案为:.【点睛】本题考查直线与椭圆相交问题,解题时由三角形面积相等得出线段长的比例关系,解题是由把线段长的比例关系用点的横坐标表示.16、【解析】
根据题意可得出,然后进行补集的运算即可.【详解】根据题意知,,,,.故答案为:.【点睛】本题考查列举法的定义、全集的定义、补集的运算,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】试题分析:(1);(2)由椭圆对称性,知,所以,此时直线方程为,故.(3)设,则,通过直线和椭圆方程,解得,,所以,即存在.试题解析:(1)设椭圆方程为,由题意知:解之得:,所以椭圆方程为:(2)若,由椭圆对称性,知,所以,此时直线方程为,由,得,解得(舍去),故.(3)设,则,直线的方程为,代入椭圆方程,得,因为是该方程的一个解,所以点的横坐标,又在直线上,所以,同理,点坐标为,,所以,即存在,使得.18、(1)证明见解析(2)证明见解析【解析】
(1)先由基本不等式可得,而,即得证;(2)首先推导出,再利用,展开即可得证.【详解】证明:(1),,,(当且仅当时取等号).(2),,,,,,,.【点睛】本题考查不等式的证明,考查基本不等式的运用,考查逻辑推理能力,属于中档题.19、(1)(2)①生产线上挽回的损失较多.②见解析【解析】
(1)由题意得到关于的不等式,求解不等式得到的取值范围即可确定其最小值;(2)①.由题意利用二项分布的期望公式和数学期望的性质给出结论即可;②.由题意首先确定X可能的取值,然后求得相应的概率值可得分布列,最后由分布列可得利润的期望值.【详解】(1)设从,生产线上各抽检一件产品,至少有一件合格为事件,设从,生产线上抽到合格品分别为事件,,则,互为独立事件由已知有,则解得,则的最小值(2)由(1)知,生产线的合格率分别为和,即不合格率分别为和.①设从,生产线上各抽检件产品,抽到不合格产品件数分别为,,则有,,所以,生产线上挽回损失的平均数分别为:,所以生产线上挽回的损失较多.②由已知得的可能取值为,,,用样本估计总体,则有,,所以的分布列为所以(元)故估算估算该厂产量件时利润的期望值为(元)【点睛】本题主要考查概率公式的应用,二项分布的性质与方差的求解,离散型随机变量及其分布列的求解等知识,意在考查学生的转化能力和计算求解能力.20、t=1【解析】
把变形为结合基本不等式进行求解.【详解】因为即,当且仅当,,时,上述等号成立,所以,即,又x,y,z>0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 采购合同制定控制合同风险3篇
- 采购市场分析合同3篇
- 采购合同风险分析与控制要点3篇
- 采购安装合同中的支付方式3篇
- 采购合同风险评估的实践经验3篇
- 2024年度房产购买保密协议及竞品限制范本3篇
- 2024年度绿色建筑信托房产抵押担保合同样本3篇
- 采购合同样本的克罗地亚语3篇
- 采购合同评审表的改进3篇
- 采购合同中的合同转让问题3篇
- GB/T 31771-2024家政服务母婴护理服务质量规范
- 通风工程安装维修合同模板
- 广东省广州市越秀区2023-2024学年八年级上学期期末道德与法治试题(含答案)
- 公司安全生产事故隐患内部报告奖励工作制度
- 韩式皮肤管理培训
- 艾滋病预防知识讲座
- 八年级道德与法治开学摸底考试卷(天津专用)(答题卡)A4版
- 2024中考英语真题分类汇编-代词
- 第九版内科学配套课件-8-骨髓增生异常综合征(MDS)
- 水利信息化数据中心及软件系统单元工程质量验收评定表、检查记录
- 部编版2023-2024学年六年级上册语文期末测试试卷(含答案)2
评论
0/150
提交评论