版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章统计案例1.1回归分析的基本思想及其初步应用a.比《数学3》中“回归”增加的内容数学3——统计画散点图了解最小二乘法的思想求回归直线方程y=bx+a用回归直线方程解决应用问题选修1-2——统计案例引入线性回归模型y=bx+a+e了解模型中随机误差项e产生的原因了解相关指数R2
和模型拟合的效果之间的关系了解残差图的作用利用线性回归模型解决一类非线性回归问题正确理解分析方法与结果问题1:正方形的面积y与正方形的边长x之间的函数关系是y=x2确定性关系问题2:某水田水稻产量y与施肥量x之间是否-------有一个确定性的关系?例如:在7块并排、形状大小相同的试验田上进行施肥量对水稻产量影响的试验,得到如下所示的一组数据:施化肥量x15202530354045水稻产量y330345365405445450455复习:变量之间的两种关系自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。1、定义:
1):相关关系是一种不确定性关系;注对具有相关关系的两个变量进行统计分析的方法叫回归分析。2):例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。根据最小二乘法估计和就是未知参数a和b的最好估计,制表78合计654321i所以回归方程是所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为探究P4:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。探究P4:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?答:身高为172cm的女大学生的体重不一定是60.316kg,但一般可以认为她的体重在60.316kg左右。60.136kg不是每个身高为172cm的女大学生的体重的预测值,而是所有身高为172cm的女大学生平均体重的预测值。例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:3、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以不能用一次函数y=bx+a描述它们关系。我们可以用下面的线性回归模型来表示:y=bx+a+e,其中a和b为模型的未知参数,e称为随机误差。思考P3产生随机误差项e的原因是什么?思考产生随机误差项e的原因是什么?随机误差e的来源(可以推广到一般):1、其它因素的影响:影响体重y的因素不只是身高x,可能还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高x
的观测误差。函数模型与回归模型之间的差别函数模型:回归模型:可以提供选择模型的准则函数模型与回归模型之间的差别函数模型:回归模型:
线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解析部分y的变化。
在统计中,我们也把自变量x称为解析变量,因变量y称为预报变量。我们可以通过残差发现原始数据中的可疑数据,判断所建立的模型的拟合效果残差.女大学生身高和体重的原始数据以及相应的残差数据以纵坐标为残差,横坐标可以为样本编号,或身高数据,或体重的估计值作出的图像称为残差图
几点说明:第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。为确定的数残差平方和用身高预报体重时,需要注意下列问题:1.回归方程只适用于我们所研究的样本的总体.2.我们所建立的回归方程一般都有时间性.3.样本取值的范围会影响回归方程的适用范围.4.不能期望回归方程得到的预报值就是预报变量的精确值.一般地,建立回归模型的基本步骤为:(1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量.(2)画出解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等).(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程).(4)按一定规则(如最小二乘法)估计回归方程中的参数.(5)得出结果后分析残差图是否有异常(如个别数据对应残差过大,残差呈现不随机的规律性等).若存在异常,则检查数据是否有误,或模型是否合适等.例2、一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,测得数据如下:零件数(x)个102030405060708090100加工时间y626875818995102108115122(1)y与x是否具有线性相关?(2)若y与x具有线性相关关系,求回归直线方程(3)预测加工95个零件需花费多少时间?作散点图如下:不难看出x,y成线性相关。例3
一只红铃虫的产卵数y和温度x有关。现收集了7组观测数据列于表中:(1)试建立产卵数y与温度x之间的回归方程;并预测温度为28oC时产卵数目。(2)你所建立的模型中温度在多大程度上解释了产卵数的变化?温度xoC21232527293235产卵数y/个711212466115325非线性回归问题假设线性回归方程为:ŷ=bx+a选模型由计算器得:线性回归方程为y=19.87x-463.73
相关指数R2=r2≈0.8642=0.7464估计参数解:选取气温为解释变量x,产卵数为预报变量y。选变量所以,一次函数模型中温度解释了74.64%的产卵数变化。探索新知画散点图050100150200250300350036912151821242730333639方案1分析和预测当x=28时,y=19.87×28-463.73≈93一元线性模型奇怪?93>66?模型不好?
y=bx2+a变换y=bt+a非线性关系线性关系方案2问题1选用y=bx2+a,还是y=bx2+cx+a?问题3
产卵数气温问题2如何求a、b?合作探究
t=x2二次函数模型方案2解答平方变换:令t=x2,产卵数y和温度x之间二次函数模型y=bx2+a就转化为产卵数y和温度的平方t之间线性回归模型y=bt+a温度21232527293235温度的平方t44152962572984110241225产卵数y/个711212466115325作散点图,并由计算器得:y和t之间的线性回归方程为y=0.367t-202.543,相关指数R2=0.802将t=x2代入线性回归方程得:
y=0.367x2-202.543当x=28时,y=0.367×282-202.54≈85,且R2=0.802,所以,二次函数模型中温度解释了80.2%的产卵数变化。t问题2变换y=bx+a非线性关系线性关系问题1如何选取指数函数的底?产卵数气温指数函数模型方案3合作探究对数方案3解答温度xoC21232527293235z=lny1.9462.3983.0453.1784.1904.7455.784产卵数y/个711212466115325xz当x=28oC时,y≈44,指数回归模型中温度解释了98.5%的产卵数的变化由计算器得:z关于x的线性回归方程为
对数变换:在中两边取常用对数得令,则就转换为z=bx+a.相关指数R2=0.98最好的模型是哪个?产卵数气温产卵数气温线性模型二次函数模型指数函数模型比一比函数模型相关指数R2线性回归模型0.7464二次函数模型0.80指数函数模型0.98最好的模型是哪个?回归分析(二)则回归方程的残差计算公式分别为:由计算可得:x21232527293235y7112124661153250.557-0.1011.875-8.9509.230-13.38134.67547.69619.400-5.832-41.000-40.104-58.26577.968因此模型(1)的拟合效果远远优于模型(2)。总结对于给定的样本点两个含有未知参数的模型:其中a和b都是未知参数。拟合效果比较的步骤为:(1)分别建立对应于两个模型的回归方程与其中和分别是参数a和b的估计值;(2)分别计算两个回归方程的残差平方和与(3)若则的效果比的好;反之,的效果不如的好。练习:为了研究某种细菌随时间x变化,繁殖的个数,收集数据如下:天数x/天
1
2
34
56繁殖个数y/个
6
12
25
49
95190(1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图;
(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年新高一语文初升高衔接《赤壁赋》《登泰山记》含答案解析
- 【语文课件】土地的誓言课件
- 纸制风琴式文件袋市场发展现状调查及供需格局分析预测报告
- 皮肤增白剂产业规划专项研究报告
- 消毒设备产业规划专项研究报告
- 球拍胶粒市场发展预测和趋势分析
- 硅藻土制浴室地垫市场发展预测和趋势分析
- 个人用肥皂市场洞察报告
- 美容凝胶市场发展现状调查及供需格局分析预测报告
- 理发师用工作服市场发展现状调查及供需格局分析预测报告
- 民用航空货物邮件运输安全保卫规则培训考试专项试卷
- 2024-2030年中国高速公路服务区行业投资分析及前景规划研究报告
- 企业发展战略规划实施
- 管理能力与领导力管理培训
- 《工贸企业有限空间作业安全规定》知识培训
- 2024-2030年电动牙刷市场投资前景分析及供需格局研究预测报告
- 第03讲 鉴赏诗歌的表达技巧(讲义)(学生版) 2025年高考语文一轮复习讲练测(新教材新高考)
- DB11∕T 1071-2014 排水管(渠)工程施工质量检验标准
- 2024-2025学年北师大版九年级数学上册期中培优试题
- 《建筑工程设计文件编制深度规定》(2022年版)
- 2024年版的企业绩效评价标准
评论
0/150
提交评论