版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
迁移学习算法研究庄福振中国科学院计算技术研究所2016年4月18日TrainingDataClassifierUnseenData(…,long,T)good!Whatif…2传统监督机器学习(1/2)2023/2/1[fromProf.QiangYang]传统监督机器学习(2/2)32023/2/1传统监督学习同源、独立同分布两个基本假设标注足够多的训练样本在实际应用中通常不能满足!训练集测试集分类器训练集测试集分类器迁移学习42023/2/1实际应用学习场景HP新闻Lenovo新闻不同源、分布不一致人工标记训练样本,费时耗力迁移学习运用已有的知识对不同但相关领域问题进行求解的一种新的机器学习方法放宽了传统机器学习的两个基本假设迁移学习场景(1/4)52023/2/1迁移学习场景无处不在迁移知识迁移知识图像分类HP新闻Lenovo新闻新闻网页分类异构特征空间6Theappleisthepomaceousfruitoftheappletree,speciesMalusdomesticaintherosefamilyRosaceae...BananaisthecommonnameforatypeoffruitandalsotheherbaceousplantsofthegenusMusawhichproducethiscommonlyeatenfruit...Training:TextFuture:ImagesApplesBananas迁移学习场景(2/4)2023/2/1[fromProf.QiangYang]XinJin,FuzhenZhuang,SinnoJialinPan,ChangyingDu,PingLuo,QingHe:HeterogeneousMulti-taskSemanticFeatureLearningforClassification.CIKM2015:1847-1850.TestTestTrainingTrainingClassifierClassifier72.65%DVDElectronicsElectronics84.60%ElectronicsDrop!迁移学习场景(3/4)72023/2/1[fromProf.QiangYang]8DVDElectronicsBookKitchenClothesVideogameFruitHotelTeaImpractical!迁移学习场景(4/4)2023/2/1[fromProf.QiangYang]OutlineConceptLearningforTransferLearningConceptLearningbasedonNon-negativeMatrixTri-factorizationforTransferLearningConceptLearningbasedonProbabilisticLatentSemanticAnalysisforTransferLearningTransferLearningusingAuto-encodersTransferLearningfromMultipleSourceswithAutoencoderRegularizationSupervisedRepresentationLearning:TransferLearningwithDeepAuto-encoders92023/2/1ConceptLearningbasedonNon-negativeMatrixTri-factorizationforTransferLearningConceptLearningforTransferLearning102023/2/1IntroductionManytraditionallearningtechniquesworkwellonlyundertheassumption:Trainingandtestdatafollowthesamedistribution
Training(labeled)ClassifierTest(unlabeled)FromdifferentcompaniesEnterpriseNewsClassification:includingtheclasses“ProductAnnouncement”,“Businessscandal”,“Acquisition”,……Productannouncement:HP'sjust-releasedLaserJetProP1100printerandtheLaserJetProM1130andM1210multifunctionprinters,price…performance
...AnnouncementforLenovoThinkPad
ThinkCentre–price$150offLenovoK300desktopusingcouponcode...LenovoThinkPad
ThinkCentre–price$200offLenovoIdeaPadU450plaptopusing....theirperformanceHPnewsLenovonewsDifferentdistributionFail!11ConceptLearningforTransferLearning2023/2/1Motivation(1/3)ExampleAnalysis
Productannouncement:HP'sjust-releasedLaserJetProP1100printerandtheLaserJetProM1130andM1210multifunctionprinters,price…performance
...AnnouncementforLenovoThinkPad
ThinkCentre–price$150offLenovoK300desktopusingcouponcode...LenovoThinkPad
ThinkCentre–price$200offLenovoIdeaPadU450plaptopusing....theirperformanceHPnewsLenovonewsProductwordconceptLaserJet,printer,price,performanceThinkPad,ThinkCentre,price,performanceRelatedProductannouncementdocumentclass:12Sharesomecommonwords:announcement,price,performance…indicateConceptLearningforTransferLearning2023/2/1Motivation(2/3)ExampleAnalysis:
HPLaserJet,printer,price,performanceetal.LenovoThinkpad,Thinkcentre,price,performanceetal.Thewordsexpressingthesamewordconceptaredomain-dependent
13ProductProductannouncementwordconceptindicatesTheassociationbetweenwordconceptsanddocumentclassesisdomain-independent
ConceptLearningforTransferLearning2023/2/1Motivation(3/3)14Furtherobservations:Differentdomainsmayusesamekeywordstoexpressthesameconcept(denotedasidenticalconcept)Differentdomainsmayalsousedifferentkeywordstoexpressthesameconcept(denotedasalikeconcept)Differentdomainsmayalsohavetheirowndistinctconcepts(denotedasdistinctconcept)TheidenticalandalikeconceptsareusedasthesharedconceptsforknowledgetransferWetrytomodelthesethreekindsofconceptssimultaneouslyfortransferlearningtextclassificationConceptLearningforTransferLearning2023/2/1PreliminaryKnowledgeBasicformulaofmatrixtri-factorization:wheretheinputXistheword-documentco-occurrencematrix
denotesconceptinformation,mayvaryindifferentdomainsFdenotesthedocumentclassificationinformation
indeedistheassociationbetweenwordconceptsanddocumentclasses,mayretainstablecrossdomainsGS15ConceptLearningforTransferLearning2023/2/1Previousmethod-MTrickinSDM2010(1/2)SketchmapofMTrick
SourcedomainXs
FsGsFtGtTargetdomainXtSKnowledgeTransfer16ConceptLearningforTransferLearning2023/2/1Consideringthealikeconcepts MTrick(2/2)OptimizationproblemforMTrickG0isthesupervisioninformationtheassociationSissharedasbridgetotransferknowledge17ConceptLearningforTransferLearningDualTransferLearning(Longetal.,SDM2012),consideringidenticalandalikeconcepts2023/2/1TriplexTransferLearning(TriTL)(1/5)Furtherdividethewordconceptsintothreekinds:
18F1,identicalconcepts;F2,alikeconcepts;F3,distinctconceptsInput:ssourcedomainXr(1≤r≤s)withlabelinformation,ttargetdomainXr(s+1≤r≤s+t)WeproposeTriplexTransferLearningframeworkbasedonmatrixtri-factorization(TriTLforshort)
2023/2/1ConceptLearningforTransferLearningF1,S1andS2
aresharedasthebridgeforknowledgetransferacrossdomainsThesupervisioninformationisintegratedbyGr(1≤r≤s)insourcedomainsTriTL(2/5)OptimizationProblem
192023/2/1ConceptLearningforTransferLearningTriTL(3/5)Wedevelopanalternativelyiterativealgorithmtoderivethesolutionandtheoreticallyanalyzeitsconvergence 202023/2/1ConceptLearningforTransferLearningTriTL(4/5)Classificationontargetdomains When1≤r≤s,Grcontainsthelabelinformation,soweremainitunchangedduringtheiterations
whenxibelongstoclassj,thenGr(i,j)=1,elseGr(i,j)=0Aftertheiteration,weobtaintheoutputGr(s+1≤r≤s+t),thenwecanperformclassificationaccordingtoGr212023/2/1ConceptLearningforTransferLearningTriTL(5/5)AnalysisofAlgorithmConvergence Accordingtothemethodologyofconvergenceanalysisinthetwoworks[Leeetal.,NIPS’01]and[Dingetal.,KDD’06],thefollowingtheoremholds.Theorem(Convergence):Aftereachroundofcalculatingtheiterativeformulas,theobjectivefunctionintheoptimizationproblemwillconvergemonotonically.222023/2/1ConceptLearningforTransferLearning232023/2/1rec.autosrec.motorcyclesrec.baseballrec.hockeysci.cryptsic.electronicssci.medsci.spacecomp.graphicscomp.sys.ibm.pc.hardwarecomp.sys.mac.hardwarecomp.windows.xtalk.politics.misctalk.politics.gunstalk.politics.mideasttalk.religion.miscrecscicomptalkDataPreparation(1/3)20Newsgroups Fourtopcategories,eachtopcategorycontainsfoursub-categories SentimentClassification,fourdomains:books,dvd,electronics,kitchenRandomlyselecttwodomainsassources,andtherestastargets,then6problemscanbeconstructed
ConceptLearningforTransferLearning242023/2/1rec.autosrec.motorcyclesrec.baseballrec.hockeysci.cryptsic.electronicssci.medsci.spacerec+sci-baseballcrypySourcedomainautosspaceTargetdomainFortheclassificationproblemwithonesourcedomainandonetargetdomain,wecanconstruct144()
problemsDataPreparation(2/3)Constructclassificationtasks(TraditionalTL)ConceptLearningforTransferLearning252023/2/1Constructnewtransferlearningproblemsrec.autosrec.motorcyclesrec.baseballrec.hockeysci.cryptsic.electronicssci.medsci.spacerec+sci-baseballcrypyautosspacecomp.graphicscomp.sys.ibm.pc.hardwarecomp.sys.mac.hardwarecomp.windows.xtalk.politics.misctalk.politics.gunstalk.politics.mideasttalk.religion.misccomptalkautosgraphicsMoredistinctconceptsmayexist!DataPreparation(3/3)SourcedomainTargetdomainConceptLearningforTransferLearning262023/2/1ComparedAlgorithmsConceptLearningforTransferLearningTraditionallearningAlgorithmsSupervisedLearning:LogisticRegression(LR)[Davidetal.,00]SupportVectorMachine(SVM)[Joachims,ICML’99]Semi-supervisedLearning:TSVM[Joachims,ICML’99]TransferlearningMethods:CoCC[Daietal.,KDD’07],DTL[Longetal.,SDM’12]Classificationaccuracyisusedastheevaluationmeasure272023/2/1ExperimentalResults(1/3)ConceptLearningforTransferLearningSorttheproblemswiththeaccuracyofLRDegreeoftransferdifficultyeasierGenerally,thelowerofaccuracyofLRcanindicatethehardertotransfer,whilethehigheronesindicatetheeasiertotransferharder282023/2/1ExperimentalResults(2/3)ConceptLearningforTransferLearningComparisonsamongTriTL,DTL,MTrick,CoCC,TSVM,SVMandLRondatasetrecvs.sci(144problems)TriTLcanperformwelleventheaccuracyofLRislowerthan65%292023/2/1ExperimentalResults(3/3)ConceptLearningforTransferLearningResultsonnewtransferlearningproblems,weonlyselecttheproblems,whoseaccuraciesofLRarebetween(50%,55%](Onlyslightlybetterthanrandomclassification,thustheymightbemuchmoredifficult).Weobtain65problemsTriTLalsooutperformsallthebaselinesConclusionsExplicitlydefinethreekindsofwordconcepts,i.e.,identicalconcept,alikeconceptanddistinctconceptProposeageneraltransferlearningframeworkbasedonnonnegativematrixtri-factorization,whichsimultaneouslymodelthethreekindsofconcepts(TriTL)Extensiveexperimentsshowtheeffectivenessoftheproposedapproach,especiallywhenthedistinctconceptsmayexist302023/2/1ConceptLearningforTransferLearningConceptLearningbasedonProbabilisticLatentSemanticAnalysisforTransferLearningConceptLearningforTransferLearning312023/2/1322023/2/1MotivationConceptLearningforTransferLearningProductannouncement:HP'sjust-releasedLaserJetProP1100printerandtheLaserJetProM1130andM1210multifunctionprinters,price…performance
...AnnouncementforLenovoThinkPad
ThinkCentre–price$150offLenovoK300desktopusingcouponcode...LenovoThinkPad
ThinkCentre–price$200offLenovoIdeaPadU450plaptopusing....theirperformanceHPnewsLenovonewsProductwordconceptLaserJet,printer,price,performanceThinkPad,ThinkCentre,price,performanceRelatedProductannouncementdocumentclass:Sharesomecommonwords:announcement,price,performance…indicateRetrospecttheexample
332023/2/1SomenotationsddocumentydocumentclasszwordconceptSomedefinitionse.g.,p(price|Product),p(LaserJet|Product,)wwordrdomaine.g,p(Product|Productannouncement)PreliminaryKnowledge(1/3)ConceptLearningforTransferLearning342023/2/1ConceptLearningforTransferLearningPreliminaryKnowledge(2/3)ProductLaserJet,printer,announcement,price,ThinkPad,ThinkCentre,announcement,priceProductannouncementp(w|z,r1)p(w|z,r2)p(z|y)p(w|z,r1)≠p(w|z,r2)E.g.,p(LaserJet|Product,HP)≠p(LaserJet|Product,Lenovo)p(z|y,r1)=p(z|y,r2)E.g.,p(Product|Productannoucement,HP)=p(Product|Productannoucement,Lenovo)Alikeconcept352023/2/1DualPLSA
(D-PLSA)Jointprobabilityoverallvariablesp(w,d)=p(w|z)p(z|y)p(d|y)p(y)GivendatadomainX,theproblemofmaximumloglikelihoodislogp(X;θ)=logΣz
p(Z,X;θ)
θ
includesalltheparametersp(w|z),p(z|y),p(d|y),p(y).Z
denotesallthelatentvariablesPreliminaryKnowledge(3/3)TheproposedtransferlearningalgorithmbasedonD-PLSA,denotedasHIDCConceptLearningforTransferLearning362023/2/1Identicalconceptp(w|za)p(za|y)AlikeconceptTheextensionandintensionaredomainindependentp(w|zb,r)p(zb|y)HIDC(1/3)Theextensionisdomaindependent,whiletheintensionisdomainindependentConceptLearningforTransferLearning372023/2/1Distinctconceptp(w|zc,r)p(zc|y,r)ThejointprobabilitiesofthesethreegraphicalmodelsHIDC(2/3)TheextensionandintensionarebothdomaindependentConceptLearningforTransferLearning382023/2/1Givens+t
datadomainsX={X1,…,Xs,Xs+1,…,Xs+t},withoutlossofgenerality,thefirstsdomainsaresourcedomains,andthelefttdomainsaretargetdomainsConsiderthethreekindsofconcepts:TheLog
likelihoodfunctionislogp(X;θ)=logΣz
p(Z,X;θ)
θ
includesallparametersp(w|za),p(w|zb,r),p(w|zc,r),p(za|y),p(zb|y),p(zc|y,r),p(d|y,r),p(y|r),p(r).HIDC(3/3)ConceptLearningforTransferLearning392023/2/1UsetheEMalgorithmtoderivethesolutionsEStep:ModelSolution(1/4)ConceptLearningforTransferLearning402023/2/1M
Step:ModelSolution(2/4)ConceptLearningforTransferLearning412023/2/1Semi-supervisedEMalgorithm:whenrisfromsourcedomains,thelabeledinformationp(d|y,r)isknownandp(y|r)
canbeinferedp(d|y,r)=1/ny,r,ifdbelongsyindomainr,ny,risthenumberofdocumentsinclassyindomainr,else
p(d|y,c)=0p(y|r)=ny,r/nr
,nr
isthenumberofdocumentsindomainr
whenrisfromsourcedomains,p(d|y,r)andp(y|r)keepunchangedduringtheiterations,whichsupervisetheoptimizingprocessModelSolution(3/4)ConceptLearningforTransferLearning422023/2/1ClassificationfortargetdomainsAfterweobtainthefinalsolutionsofp(w|za),p(w|zb,r),p(w|zc,r),p(za|y),p(zb|y),p(zc|y,r),p(d|y,r),p(y|r),p(r)Wecancomputetheconditionalprobabilities:
ThenthefinalpredictionisDuringtheiterations,alldomainssharep(w|za),p(za|y),p(zb|y),
whichactasthebridgeforknowledgetransferModelSolution(4/4)ConceptLearningforTransferLearning432023/2/1BaselinesComparedAlgorithmsSupervisedLearning:LogisticRegression(LG)[Davidetal.,00]SupportVectorMachine(SVM)[Joachims,ICML’99]Semi-supervisedLearning:TSVM[Joachims,ICML’99]TransferLearning:CoCC[Daietal.,KDD’07]CD-PLSA[Zhuangetal.,CIKM’10]DTL[Longetal.,SDM’12]OurMethodsHIDCMeasure:classificationaccuracyConceptLearningforTransferLearning442023/2/1Resultsonnewtransferlearningproblems,weselecttheproblems,whoseaccuraciesofLRarehigherthan50%,then334problemsareobtainedExperimentalResults(1/5)ConceptLearningforTransferLearning452023/2/1Resultsonnewtransferlearningproblems,weselecttheproblems,whoseaccuraciesofLRarehigherthan50%,then334problemsareobtainedExperimentalResults(2/5)ConceptLearningforTransferLearning462023/2/1ExperimentalResults(3/5)ConceptLearningforTransferLearning472023/2/1Sourcedomain:S
(rec.autos,
sci.space),Targetdomain:T(rec.sport.hockey,talk.politics.mideast)STSTDistinctconceptSTAlikeconceptExperimentalResults(4/5)ConceptLearningforTransferLearning482023/2/1ExperimentalResults(5/5)ConceptLearningforTransferLearningIndeed,theproposedprobabilisticmethodHIDCisalsobetterthanTriTLThismayduetothereasonthatthereismoreclearerprobabilisticexplanationofHIDCp1(z,y)=p2(z,y)orp1(z|y)=p2(z|y)whichisbetter?p(z|y)p(y)492023/2/1[1]FuzhenZhuang,PingLuo,HuiXiong,QingHe,YuhongXiong,ZhongzhiShi:ExploitingAssociationsbetweenWordClustersandDocumentClassesforCross-DomainTextCategorization.SDM2010,pp.13-24.[2]FuzhenZhuang,PingLuo,ZhiyongShen,QingHe,YuhongXiong,ZhongzhiShi,HuiXiong:CollaborativeDual-PLSA:miningdistinctionandcommonalityacrossmultipledomainsfortextclassification.CIKM2010,pp.359-368.[3]FuzhenZhuang,PingLuo,ZhiyongShen,QingHe,YuhongXiong,ZhongzhiShi,HuiXiong:MiningDistinctionandCommonalityacrossMultipleDomainsUsingGenerativeModelforTextClassification.IEEETrans.Knowl.DataEng.24(11):2025-2039(2012).[3]FuzhenZhuang,PingLuo,ChangyingDu,QingHe,ZhongzhiShi:Triplextransferlearning:exploitingbothsharedanddistinctconceptsfortextclassification.WSDM2013,pp.425-434.[4]FuzhenZhuang,PingLuo,PeifengYin,QingHe,ZhongzhiShi.:ConceptLearningforCross-domainTextClassification:aGeneralProbabilisticFramework.IJCAI2013,pp.1960-1966.ReferencesConceptLearningforTransferLearningOutlineConceptLearningforTransferLearningConceptLearningbasedonNon-negativeMatrixTri-factorizationforTransferLearningConceptLearningbasedonProbabilisticLatentSemanticAnalysisforTransferLearningTransferLearningusingAuto-encodersTransferLearningfromMultipleSourceswithAutoencoderRegularizationSupervisedRepresentationLearning:TransferLearningwithDeepAuto-encoders502023/2/1TransferLearningfromMultipleSourceswithAutoencoderRegularization512023/2/1TransferLearningUsingAuto-encoders52Motivation(1/2)TransferlearningbasedonoriginalfeaturespacemayfailtoachievehighperformanceonTargetdomaindataWeconsidertheautoencodertechniquetocollaborativelyfindanewrepresentationofbothsourceandtargetdomaindataElectronicsVideoGames
Compact;easytooperate;verygoodpicture,excited
aboutthequality;lookssharp!Averygood
game!Itisactionpacked
andfullofexcitement.Iamverymuchhooked
onthisgame.522023/2/1TransferLearningUsingAuto-encodersPreviousmethodsoftentransferfromonesourcedomaintoonetargetdomainWeconsidertheconsensusregularizedframeworkforlearningfrommultiplesourcedomainsDVDBookKitchenElectronicsWeproposeatransferlearningframeworkofconsensusregularizationautoencoderstolearnfrommultiplesourcesMotivation(2/2)532023/2/1TransferLearningUsingAuto-encodersAutoencoderNeuralNetworkMinimizingthereconstructionerrortoderivethesolution:whereh,garenonlinearactivationfunction,e.g.,Sigmoidfunction,forencodinganddecoding542023/2/1TransferLearningUsingAuto-encodersConsensusMeasure-(1/3)Example:three-classclassificationproblem,threeclassifierspredictinstancesf1f2f3f1f2f3x1111x2333x3222x4231x5313x6123ConstraintSource1:D1Source2:D2Source3:D3552023/2/1TransferLearningUsingAuto-encodersConsensusMeasure-(2/3)Example:three-classclassificationproblem,predictiononinstancexMinimalentropy,MaximalConsensusMaximalentropy,MinimalConsensusEntropybasedConsensusMeasure(Luoetal.,CIKM’08)θiistheparametervectorofclassifieri,Cistheclasslabelset562023/2/1TransferLearningUsingAuto-encodersConsensusMeasure-(3/3)Forsimplicity,theconsensusmeasureforbinaryclassificationcanberewrittenasInthiswork,weimposetheconsensusregularizationtoautoencoders,andtrytoimprovethelearningperformancefrommultiplesourcedomainssincetheireffectsonmakingthepredictionconsensusaresimilar.572023/2/1TransferLearningUsingAuto-encodersSomeNotations
SourcedomainsGivenrsourcedomains:,i.e.,
,.
ThefirstcorrespondingdatamatrixisTargetdomainThecorrespondingdatamatrixis
Thegoalistotrainaclassifier
ftomakeprecisepredictionson.582023/2/1TransferLearningUsingAuto-encodersFrameworkofCRAThedatafromallsourceandtargetdomainssharethesameencodinganddecodingweightsTheclassifierstrainedfromthenewrepresentationareregularizedtopredictthesameresultsontargetdomaindata592023/2/1TransferLearningUsingAuto-encodersOptimizationProblemofCRATheoptimizationproblem:ReconstructionError602023/2/1TransferLearningUsingAuto-encodersOptimizationProblemofCRATheoptimizationproblem:ConsensusRegularization612023/2/1TransferLearningUsingAuto-encodersOptimizationProblemofCRATheoptimizationproblem:ThetotallossofsourceclassifiersoverthecorrespondingsourcedomaindatawiththehiddenrepresentationWeighdecayterm622023/2/1TransferLearningUsingAuto-encodersTheSolutionofCRAWeusethegradientdescentmethodtoderivethesolutionofallparametersƞisthelearningrate.ThetimecomplexityisO(rnmk)Theoutput:theencodinganddecodingparameters,andsourceclassifierswithlatentrepresentation.632023/2/1TransferLearningUsingAuto-encodersTargetClassifierConstructionTwoScheme:Trainthesourceclassifiersbasedonandcombinethemas,whereCombineallthesourcedomaindataasZSandtrainaunifiedclassifierusinganysupervisedlearningalgorithms,e.g.,SVM,LogisticRegression(LR).ThetwoaccuraciesaredenotedasCRAvandCRAu,respectively642023/2/1TransferLearningUsingAuto-encodersDataSets-(1/2)ImageData(fromLuoetal.,CIKM08)(Someexamples)AB
A1A2A3A4B1B2B3B4Threesources:A1B1A2B2A3B3Targetdomain:A4B4Totally,96()3-sourcevs1-targetdomain(3vs1)probleminstancescanbeconstructedfortheexperimentalevaluation652023/2/1TransferLearningUsingAuto-encodersDataSets-(2/2)SentimentClassification(fromBlitzeretal.,ACL07)Four3-sourcevs1-targetdomainclassificationproblemsareconstructedDVDBookKitchenElectronicsTheaccuracyontargetdomaindataisusedastheevaluationmeasureBothSVMandLRareusedtotrainclassifiersonthenewrepresentation662023/2/1TransferLearningUsingAuto-encodersAllComparedAlgorithmsBaselinesSupervisedlearningonoriginalfeatures:SVM
[Joachims,ICML’99],LogisticRegression(LR)[Davidetal.,00]Embeddingmethodbasedonautoencoders(EAER)[Yuetal.,ECML’13]MarginalizedStackedDenoisingAutoencoders
(mSDA)[Chenetal.,ICML’12]TransferComponentAnalysis(TCA)[Panetal.,TNN’11]Transferlearningfrommultiplesources(CCR3)(Luoetal.,CIKM’08)Ourmethod:CRAvandCRAuForthemethodswhichcannothandlemultiplesources,wetraintheclassifiersfromeachsourcedomainandmergeddataofallsources(r+1accuracies).Finally,maximal,meanandminimalvaluesarereported.672023/2/1TransferLearningUsingAuto-encoders68ExperimentalResults-(1/2)TransferLearningwithMultipleSourcesviaConsensusRegularizationAutoencodersFuzhenZhuang,XiaohuCheng,SinnoJialinPan,WenchaoYu,QingHe,andZhongzhiShiResultson96imageclassificationproblems69ExperimentalResults-(2/2)TransferLearningwithMultipleSourcesviaConsensusRegularizationAutoencodersFuzhenZhuang,XiaohuCheng,SinnoJialinPan,WenchaoYu,QingHe,andZhongzhiShiResultson4sentimentclassificationproblemsConclusionsThewellknownrepresentationlearningtechniqueautoencoderisconsidered,andweformalizetheautoencodersandconsensusregularizationintoaunifiedoptimizationframeworkExtensivecomparisonexperimentsonimageandsentimentdataareconductedtoshowtheeffectivenessoftheproposealgorithm702023/2/1TransferLearningUsingAuto-encodersSupervisedRepresentationLearning:TransferLearningwithDeepAuto-encoders712023/2/1TransferLearningUsingAuto-encodersAutoencoderisanunsupervisedfeaturelearningalgorithm,whichcannoteffectivelymakeuseofthelabelinformationLimitationofBasicAutoencoderContributionofThisWorkWeextendAutoencodertomulti-layerstructure,andincorporatethelabelasonelayerMotivation722023/2/1TransferLearningUsingAuto-encoders源领域和目标领域共享编码和解码权重利用KL距离对隐层空间进行约束利用多类回归模型对类标层进行约束FrameworkofTLDA(1/5)732023/2/1TransferLearningUsingAuto-encoders目标是最小化重构误差:DeepAutoencoderFrameworkofTLDA(2/5)742023/2/1TransferLearningUsingAuto-encodersKL距离KL距离衡量的是两个概率分布的差异情况,计算公式如下:以上KL距离并不满足传
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《学前教育概述》课件
- 单位管理制度集合大合集【人力资源管理篇】十篇
- 单位管理制度分享汇编【员工管理篇】十篇
- 单位管理制度分享大全【人员管理篇】
- 单位管理制度范例选集【员工管理】
- 单位管理制度范例合集【人力资源管理篇】十篇
- 单位管理制度呈现合集【员工管理篇】
- 单位管理制度呈现大合集【人事管理】十篇
- 《微点精析》考向19 文化常识 高考语文一轮复习考点微专题训练(原卷+解析)
- 第4单元 民族团结与祖国统一(B卷·能力提升练)(解析版)
- 中考数学第一轮复习
- 一汽靖烨发动机有限公司安全文化知识手册
- 当前国际形势
- 湘贺水利枢纽水电站设计
- 高压线防护架搭设施工方案
- 四川省成都市2021-2022学年高一(上)期末调研考试物理试题Word版含解析
- 二次元作业指导书
- GB/T 15180-2010重交通道路石油沥青
- 公路工程质量与安全管理课件
- 计算机基础知识整理课件
- 高一数学必修2《事件的关系和运算》课件
评论
0/150
提交评论