




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
7.1热压烧结的发展1826年索波列夫斯基首次利用常温压力烧结的方法得到了白金。而热压技术已经有70年的历史,热压是粉末冶金发展和应用较早的一种热成形技术。1912年,德国发表了用热压将钨粉和碳化钨粉制造致密件的专利。1926~1927年,德国将热压技术用于制造硬质合金。从1930年起,热压更快地发展起来,主要应用于大型硬质合金制品、难熔化合物和现代陶瓷等方面。1施加外压力的烧结,简称加压烧结(appliedpressure)
or(pressure—assistedsintering)不施加外压力的烧结,简称不加压烧结(pressurelesssintering)不加压烧结加压烧结烧结过程可以分为两大类:对松散粉末或粉末压坯同时施以高温和外压,则是所谓的加压烧结2热压是指在对置于限定形状的石墨模具中的松散粉末或对粉末压坯加热的同时对其施加单袖压力的烧结过程。热压的优点:热压时,由于粉料处于热塑性状态,形变阻力小,易于塑性流动和致密化,因此,所需的成型压力仅为冷压法的1/10,可以成型大尺寸的A12O3、BeO、BN和TiB2等产品。由于同时加温、加压,有助于粉末颗粒的接触和扩散、流动等传质过程,降低烧结温度和缩短烧结时间,因而抑制了晶粒的长大。3热压法容易获得接近理论密度、气孔率接近于零的烧结体,容易得到细晶粒的组织,容易实现晶体的取向效应和控制台有高蒸气压成分纳系统的组成变化,因而容易得到具有良好机械性能、电学性能的产品。能生产形状较复杂、尺寸较精确的产品。热压的优点:热压法的缺点是生产率低、成本高。41固体粉末烧结的过程和特点在热力学上,所谓烧结是指系统总能量减少的过程。坯体烧结后在宏观上的变化是:体积收缩,致密度提高,强度增加因此烧结程度可以用坯体收缩率、气孔率或体积密度与理论密度之比等来表征。5一般烧结过程,总伴随着气孔率的降低,颗粒总表面积减少,表面自由能减少及与其相联系的晶粒长大等变化,可根据其变化特点来划分烧结阶段。烧结初期烧结中期烧结后期6烧结初期随着烧结温度的提高和时间的延长,开始产生颗粒间的键合和重排过程,这时粒子因重排而相互靠拢,大空隙逐渐消失,气孔的总体积迅速减少,但颗粒间仍以点接触为主,总表面积并没减小。粉料在外部压力作用下,形成一定形状的、具有一定机械强度的多孔坯体。烧结前成型体中颗粒间接触有的波此以点接触,有的则相互分开,保留着较多的空隙,如图7.1(a)。图7.1不同烧结阶段晶粒排列过程示意图7烧结中期开始有明显的传质过程。颗粒间由点接触逐渐扩大为面接触,粒界面积增加,固-气表面积相应减少,但气孔仍然是联通的,此阶段晶界移动比较容易。在表面能减少的推动力下,相对密度迅速增大,粉粒重排、晶界滑移引起的局部碎裂或塑性流动传质,物质通过不同的扩散途径向颗粒间的颈部和气孔部位填空,使颈部渐渐长大,并逐步减少气孔所占的体积,细小的颗粒之间开始逐渐形成晶界,并不断扩大晶界的面积,使坯体变得致密化,如图7.1(b)(c)。
8随着传质的继续,粒界进一步发育扩大,气孔则逐渐缩小和变形,最终转变成孤立的闭气孔。与此同时颗粒粒界开始移动,粒子长大,气孔逐渐迁移到粒界上消失,但深入晶粒内部的气孔则排除比较难。烧结体致密度提高,坯体可以达到理论密度的95%左右。烧结后期92固体粉末烧结的本征热力学驱动力致密的晶体如果以细分的大量颗粒形态存在,这个颗粒系统就必然处于一个高能状态.因为它本征地具有发达的颗粒表面,与同质量的未细分晶体相比具有过剩的表面能。烧结的主要目的是把颗粒系统烧结成为一个致密的晶体,是向低能状态过渡。因此烧结前,颗粒系统具有的过剩的表面能越高.这个过渡过程就越容易,它的烧结活性就越大。10(1)本征过剩表面能驱动力可以用下述简单方法估计本征过剩表面能驱动力数量级。假定烧结前粉末系统的表面能为Ep.烧结成一个致密的立方体后的表面能为Ed,忽略形成晶界能量的消耗,则本征驱动力为:11代入晶体材料的摩尔质量Wm(g/mol),固-气表面能γsv(J/m2),粉末比表面Sp(cm2/g),致密固体密度d(g/cm3),则有:由于>>,则可近似为12表7-1典型粉末的本征驱动力ΔE及计算参考数值粉末粒度/µm比表面积km2·g-1固体密度kg·mol-1摩尔质量kg·cm-1γsv/J·mol-1本征驱动力Cu1505×1028.963.551.65.1Ni104×1038.958.691.94.5×10W0.3104
19.3183.862.95.3×102
Al2O30.2105
4.0102.01.51.5×103粉末粒度越粗,比表面越小,本征表面能驱动力就越小;而粒度越细,比表面越大,本征表面能驱动力就越大。这也是实际烧结中细粉比粗粉易于烧结的原因13在不同种粉末之间比较颗粒系统的烧结活性时,不要忘记单个颗粒的烧结活性即粉末晶体的自扩散性.综合考虑这两个因素来确定烧结活性,有一个判据是值得注意的。Burke指出,要想在适当的烧结时间内获得烧结体的充分致密化,粉末颗粒系统应当满足下式关系:式中Dv——体积扩散系数,cm2/s;2a——粉末粒度,μm。14例如,Dv的数量级为10-12cm2/s,则粉末粒度要在lμm左右。如果Dv太低,则某些共价键材枓(如Si的Dv为10-14cm2/s)若要充分地烧结致密化就要求使用粒度0.5μm左右的粉末。一般金属粉末的Dv比陶瓷粉末的Dv大,因而金属粉末的粒度可以粗些.而陶瓷则须细粉末才能获得好的烧结结果,这与烧结经验是完全吻合的。15(2)本征Laplace应力除了松散烧结(也称重力烧结)之外,粉末总是在被压制成某种形状的压坯后再进行烧结的;这样的颗粒系统就有另外两个本征的特点:颗粒之间的接触相颗粒之间存在着“空隙”或称孔洞;系统表面的减少。自由能的降低主要是通过孔洞的收缩来实现的。16烧结开始时,孔洞的形状并不是球形,面是由尖角形.圆滑菱形.近球形莲浙向球形过渡,如图7-2所示。此时,孔洞的收缩必然伴随着颗粒捶触区的扩展。这个接触区最先被称作金属颗粒之间的“桥”.旋即被Kuczynski,定义为颈(neck)。图7.2不加压固相烧结空洞形状变化示意17颗粒之间接触的直接结果是颈部出现了曲率半径;Laplace和Young以弯曲液体表面为例,给出了表面的曲率半径、表面张力和表面所受的应力差值。式中R1与R2——表面上相互垂直的两个曲线的曲率半径,称为主曲率半径。18对于一个球形孔洞,R1=R2,则变为Gibbs的解释。对于不加压团相烧结的颗粒系统,由颗粒接触形成的曲率半径对Laplace应力有重要影响.颗粒接触形成的颈如图8.3所示。图7.3两球形颗粒接触颈部主曲率半径示意19图7.3中,x表示接触面积的半径,ρ表示颈部的曲率半径,即式中的R1与R2,则颗粒接触的本征Laplace应力为:式中负号表示ρ从孔洞内计算,正号表示x在颗粒内计算半径值。20一般可以把这类加压烧结分成两大阶段来认识。Ashby把这两个阶段分为孔隙连通阶段相孤立孔洞阶段。图8.5是这两个阶段的示意图。2122在加压烧结致密化的第一阶段(也可称为烧结初期),应力的施加首先使颗粒接触区发生塑性屈服。而后在增加了的接触区形成幂指数蠕变区,各类蠕变机制导致物质迁移。同时,原于或空位不可避免地发生体积扩散相晶界扩散。晶界中的位错也可能沿晶界攀移,导致晶界滑动。第一阶段的主要特征是孔洞仍然连通。23在加压烧结第二阶段(也可称为烧结末期),上述机制仍然存在.只不过孔洞成为孤立的闭孔,位于晶界相交处。同时,并不排除在晶粒内部孤立存在的微孔。在第一阶段发生的塑性屈服是一个快过程,而蠕变是一个慢过程。通常的压力烧结的应力水平还不足以使材料全部屈服发生塑性流动。因而研究压力烧结的蠕变致密化规律是重要的。
247.2.3热压烧结的适用范围热压烧结与常压烧结相比,烧结温度要低得多,而且烧结体中气孔率低,密度高。由于在较低温度下烧结,就抑制了晶粒的生长,所得的烧结体晶粒较细,并具有较高的机械强度。热压烧结广泛地用于在普通无压条件下难致密化的材料的制备及纳米陶瓷的制备。例:纳米ZrO2(3Y)粉体采用溶胶-凝胶法制备,经550℃温度煅烧2h,获得粒径约40nm的ZrO=(3Y)粉体。将粉体置于氧化铝磨具中,加载23MPa的外压后,以20℃/min的速度升温到1300℃,保温1h后以10℃/min的速度降至室温,获得的致密的纳米Y-TZP陶瓷,晶粒尺寸约为90nm。25在现代材料工业中,用粉体原料烧结成型的产业有两类,一个是粉末冶金产业,一个是特种陶瓷产业。所使用的烧结工艺方法主要有两种,一种是冷压成型然后烧结:另一种是热压烧结。
实验证明,采用真空热压烧结可以使产品无氧化、低孔隙、少杂质、提高合金化程度,从而提高产品的综合性能267.3热压烧结工艺7.3.1热压烧结生产工艺种类真空热压气氛热压震动热压均衡热压热等静压反应热压超高压烧结27真空和气氛热压1对于空气中很难烧结的制品(如透光体或非氧化物),为防止其氧化等,研究了气氛烧结方法。即在炉膛内通入一定气体,形成所要求的气氛,在此气氛下进行烧结。而真空热压则是将炉膛内抽成真空。先进陶瓷中引人注目的Si3N4、SiC等非氧化物,由于在高温下易被氧化,因而在氮及惰性气体中进行烧结。对于在常压下易于气化的材料,可使其在稍高压力下烧结。282热等静压法(hotisostaticpressing)热等静压是指对装于包套之中的松散粉末加热的同时对其施加各向同性的等静压力的烧结过程。
热等静压的压力传递介质为惰性气体。热等静压工艺是将粉末压坯或装入包套的粉料故人高压容器中,使粉料经受高温和均衡压力的作用,被烧结成致密件。29热等静压强化了压制和饶结过程.降低烧结温度,消除空隙,避免晶粒长大,可获得高的密度和强度。同热压法比较,热等静压温度低,制品密度提高。303反应热压烧结这是针对高温下在粉料中可能发生的某种化学反应过程。因势利导,加以利用的一种热压烧结工艺。也就是指在烧结传质过程中,除利用表面自由能下降和机械作用力推动外,再加上一种化学反应能作为推动力或激活能。以降低烧结温度,亦即降低了烧结难度以获得致密陶瓷。31从化学反应的角度看,可分为相变热压烧结、分解热压烧结,以及分解合成热压烧结三种类型。从能量及结构转变的过程看,在多晶转变或煅烧分解过程中,通常都有明显的热效应,质点都处于一种高能、介稳和接收调整的超可塑状态。此时,促使质点足够的机械应力,以诱导、触发、促进其转变,质点便可能顺利地从一种高能介稳状态,转变到另一种低能稳定状态,可降低工艺难度、完成陶瓷的致密烧结。其特点是热能、机械能、化学能三者缺一不可,紧密配合促使转变完成。327.3.2热压烧结生产设备热压机的结构是按加热和加压方法.所采用的气氛以及其他因素来划分的。在热压过程中通常利用电加热。最普通的方法有:对压模或烧成料通电直接加热;将压模放在电炉中对其进行间模加热;对导电压模进行直接感应加热;把非导电压模放在导电管中进行感应加热33图7.6各种加热方式热压示意图a-在电阻炉中间接加热;b-阳模直接通电流加热;c-阴模通电直接加热;d-导电(石墨)阴模感应加热;e-粉料在不导电(陶瓷)压模中感应加热1-加热装置;2-阴模;3-制品;4、5-阳模;6-绝缘;7、8-石墨的或铜的(水冷)导体此外,也可以采用超声波先进技术(见图8.7)。34表7-6列出了单相加压的热压模具材料7357.3.3热压烧结的过程、工艺参数及控制过程工艺制度影响热压烧结的因素1236工艺制度1工艺制度主要包括下述四个方面:最高烧结温度保温时间降温方式气氛的控制
这些制度的确定除和原料成分,加工粉碎情况,成型式,化学反应过程等有关外,还与热压炉结构,加热型装炉方式等都有关系。37(1)升温过程从室温升至最高烧结温度的这段时间,叫做升温期。在满足产品性能要求的情况下,升温速度应该尽可能快些。在这一时期必须考虑下列几个问题。从烧结过程考虑,对下述几种情况应有足够的重视:
(a)如坯体中有气体析出时,升温速度要慢。例如吸附水的挥发,有机粘合剂的燃烧,这都将在低温区完成,故直至400~500℃之前,升温速度不宜过快。此外,结晶水的释放,盐酸后氢氧化物的分解,都有不同程度的气体析出。这时的升温速度也要放慢,具体的温度,可在有关的差热分析和失重数据中找到。38(b)坯体成分中存在多晶转变时,应密切注意。如系数热反应,则应减缓供热,以免出现热突变,加剧体效应而引起工作开裂;如系吸热反应,则可适当加强供热,并注意其温度不一定上升,待转变完后则应减缓供热,勿使升温过快.。相变温度亦可在综合热分析数据中找到。(c)有液相出现时升温要谨慎。由于液相具有湿润性,可在加强粉粒之间的接触,有利于热的传递和减缓温度梯度,且由于液相的无定形性,可以缓冲相变的定向涨缩,有利于提高升温速度。但如升温过猛,局部液相过多,由于来不及将固相溶入其中而使粘度加大时,则有可能由于自重后内应力的作用而使瓷件变形、坍塌,故升温速度又不能太快。特别是当液相由低共溶方式提供时,温度稍许升高将使液相含量大为增加,或湿度显著下降。只有当固相物质逐步溶入或新的化合物形成,使粘度上升或消耗液相时,才能继续升温。39(d)此外,不同电子陶瓷还可能有其特殊的升温方式,如中间保温、突跃升温等。BaTiO3或PbTiO3为基本成分的正温度系数热敏电阻瓷即为一例。如果在700~800℃,突跃升温至1100~1200℃,往往可以获得优异的阻—温特性。40(2)最高烧结温度与保温时间最高烧结温度与保温时间两者之间有一定的相互制约特性,可以一定程度地相互补偿。通常最高烧结温度与保温时间之间是可以相互调节的,以达到一次晶粒发展成熟,晶界明显、交角近120°,没有过分二次晶粒长大,收缩均匀、气孔小,烧结件紧致而又耗能量少为目的。(a)最高烧结温度的确定在生产或研究工作中,某一具体瓷料最高烧结温度的确定,当然可在其有段相图中找到有关的数值,但这只能作为参考。更主要的还是要靠综合热分析等具体实验数据来决定。因为,在相图总所反应的往往只是主要成分而不是所有成分,而且粉粒的粗细与配比,成型压力与坯密度,添加剂的类型与用量,其分布与混合情况等,都与最高烧结温度密切相关,这些在相图中是无法全面反映的。41(b)最高烧结温度与保温时间的关系
对于绝大多数先进的陶瓷,在烧结后期的再结晶过程,主要都受制于扩散传质结构,对于一般小型先进陶瓷件,以及一般烧成温区较宽的瓷件,可先定下保温时间(1~3或更长)再选定最高烧结温度,因为保温时间过短,则不易准确控制,难使温度均匀。保温时间过长使晶粒长大,又将浪费热能。不过对于烧成温区特别窄的瓷料,则宁可最高烧结温度选的低一些,保温时间选的长些,以免温度的偶然上偏出现过烧废品。42(c)粉料粒度与最高烧结温度的关系一般来说,粉料粒度越细活性愈高,越容易烧结,这对烧结初期来说是显而易见的,但并不见得细粒工件的最终密度,就必须比粗粒工具的大,这还得看烧结温度喝保温时间是怎样安排的,粗粒坯体必须要高温烧结,细粒坯体必须采用较低的温度,才能获得致密陶瓷。43(3)降温方式所谓降温方式,是指瓷件烧好后的冷却速度及其有关温度。一般采用随炉冷却。442影响热压烧结的因素烧结温度、时间和物料粒度是三个直接影响热压烧结的因素。因为随着温度升高,物料蒸汽压增高,扩散系数增大,黏度降低,从而促进了蒸发-凝聚,离子和空位扩散以及颗粒重排和粘性塑性流动过程,使烧结加速。这对于黏性流动和溶解-沉淀过程的烧结影响尤为明显。延长烧结时间一般都会不同程度地促进烧结,但对黏性流动机理的烧结较为明显,而对体积扩散和表面扩散机理影响较小。
45
然而在烧结后期,不合理地延长烧结时间,有时会加剧二次再结晶作用,反而得不到充分致密的制品。减小物料颗粒度则总表面能增大因而会有效加速烧结。但,在实际烧结过程中,除了上述这些直接因素外,尚有许多间接因素。例如通过控制物料的晶体结构、晶界、粒界、颗粒堆积状况和烧结气氛以及引入微量添加物等,以改变烧结条件和物料活性,同样可以有效地影响烧结速度。46(1)温度和保温时间的影响温度和保温时间是烧结的重要外因条件,提高烧结温度和延长保温时间有利于烧结的进行。烧结过程是随着温度提高试样的气孔率降低,致密度和强度不断提高的过程。在晶体中晶格能愈大,离子结合也愈牢固,离子的扩散也愈困难,所需烧结温度也就愈高。各种晶体键合情况不同,因此烧结温度也相差很大,即使对同一种晶体烧结温度也不是—个固定不变的值。
提高烧结温度无论对固相扩散或对溶解-沉淀等传质都是有利的。但是单纯提高烧结温度不仅浪费燃料,很不经济,而且还会促使二次结晶而使制品性能恶化。在有液相的烧结中,温度过高使液相量增加,粘度下降,使制品变形。因此不同制品的烧结温度必须仔细试验来确定。47由烧结机理可知,只有体积扩散导致坯体致密化,表面扩散只能改变气孔形状而不能引起颗粒中心距的逼近,因此不出现致密化过程,图7.10表示表面扩散、体积扩散与温度的关系。748在烧结高温阶段主要以体积扩散为主,而在低温阶段以表面扩散为主。如果材料的烧结在低温时间较长,不仅不引起致密化反而会因表面改变了气孔的形状而给制品性能带来了损害。因此从理论上分析应尽可能快地从低温升到高温以创造体积扩散的条件。49外压对烧结的影响主要表现在两个方面:生坯成型压力和烧结时的外加压力(热压)。从烧结和固相反应机理容易理解,成型压力增大,坯体中颗粒堆积就较紧密,接触面积增大,烧结被加速。与此相比,热压的作用是更为重要的。对热压烧结机理尚有不同看法,但从粘性、塑性流动机理出发是不难理解的。因烧结后期坯体中闭气孔的气体压力增大,抵消了表面张力的作用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳市皇姑区2025届三年级数学第二学期期末复习检测试题含解析
- 湖南中医药大学湘杏学院《食品工程与机械2》2023-2024学年第二学期期末试卷
- 天府新区航空职业学院《高级朝鲜语I》2023-2024学年第二学期期末试卷
- 河北女子职业技术学院《生物信息学实践》2023-2024学年第二学期期末试卷
- 各行各业职业探索家长进课堂五花八门的行业工作教育课件
- 皮鞋品牌的社会责任与可持续发展报告考核试卷
- 电动车维修与保养考核试卷
- 渔业资源保护与海洋资源恢复工程考核试卷
- 冷藏车运输与国际冷链标准对接考核试卷
- 畜牧兽医技术研究与推广考核试卷
- 纸箱厂质量管理制度模版
- TSDACM 001-2023 高血压病常见中医证候诊断标准
- pu鞋底制作工艺
- 浙江空气盒子新材料有限责任公司年产20000吨功能性塑料薄膜及多用途包装制品项目环境影响报告
- 电工学(第8版)(上册 电工技术) 课件全套 秦曾煌 第1-14章 电路的基本概念与基本定律- 传感器
- 正念减压疗法的神经机制及应用研究述评
- 2023年成都市金牛区社区工作者招聘考试真题
- 教师发展营造积极学习环境的策略与方法
- 【原创】23祖先的摇篮(第一课时)
- 值日生表格模板
- 胆源性胰腺炎教学查房记录
评论
0/150
提交评论