版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八章线性离散控制系统的分析与综合8.1离散控制系统概述8.2连续信号的采样与复现8.3Z变换及Z反变换8.4线性离散系统的数学模型8.5离散控制系统稳定性分析8.6离散控制系统的稳态误差分析8.7离散控制系统的动态性能分析8.8数字控制器的模拟化设计8.9数字控制器离散化设计8.1离散控制系统概述一、离散控制系统特点:从系统结构上看,含有采样开关;从信号传递上看,系统中某一处或数处信号是脉冲序列或数字序列传递。二、离散控制系统的二种典型结构1、采样控制系统
e﹡(t)是e(t)连续误差信号经过采样开关后,获得的一系列离散的误差信号。e*(t)作为脉冲控制器的输入,经控制器对信号进行处理,在经过保持器(或滤波器)恢复为连续信号,对受控对象实施控制。
采样系统中既有离散信号,又有连续信号。采样开关接通时刻,系统处于闭环工作状态。而在采样开关断开时刻,系统处于开环工作状态。2、数字控制系统
计算机作为系统的控制器,其输入和输出只能是二进制编码的数字信号,即在时间上和幅值上都是离散信号,而系统中被控对象和测量元件的输入和输出是连续信号,故需要A/D,D/A实现两种信号的转换。三、离散控制系统的分析方法
建立在Z变换的数学基础上,采用脉冲传递函数,并利用类似连续控制系统的分析方法进行分析、研究。8.2连续信号的采样与复现一、连续信号的采样、数学描述
1、采样过程:把一连续信号转换成一串脉冲序列或数码信号的过程,称为
采样过程。例如下图中,采样器可用一个周期性闭合的采样开关表示,设采样开关每隔Ts秒闭合一次(接通一次)。f(t)为输入连续信号,则经采样开关后,f*(t)为定宽度等于τ的调幅脉冲序列,在采样瞬时nTs(n=0.1.2.3…)时出现。由于采样开关闭合时间τ很小,τ<<Ts,分析可认为τ=0。采样器的输出f*(t)信号,等于输入于采样器的连续信号在采样时刻的数值。2、数学描述为了对采样过程和采样信号进行数学描述,往往把它看成是一个幅值调制的过程,如下图所示。
幅值调制的过程,数学上表示为两个信号函数相乘,即f*(t)可以认为是输入连续信号f(t)调制在理想脉冲δT(t)上的结果。
设理想脉冲序列
则采样脉冲序列的数学表达式:
f*(t)=f(t)δT(t)=二、信号的复现及装置
使采样信号f*(t)大体上恢复连续信号f(t)的变化规律,称信号的复现。怎样才能使采样信号f*(t)大体上反映连续信号f(t)的变化规律呢?从连续信号和其采样后的离散信号的频谱特性进行分析:采样信号的频谱理想单位脉冲系列是一个周期函数,展成傅氏级数形式:
(1)、对于一个有限频谱的连续信号进行采样,当采样频率时,采样信号才可能无失真的复现原来的连续信号。(香农采样定理)(2)、系统后半部分,有一低通滤波器。
观察上图,信号的复现需满足两个条件:零阶保持器工程上最简单、最常用的低通滤波器是零阶保持器。零阶保持器10Tsδ(t)
g(t)8.3Z变换及反变换
一、Z变换
在数学上表示:对上式两边取拉氏变换可看出,是以复变量s表示的函数。引入一新变量z
----定义在Z平面上的一个复变量,称为Z变换子;
----采样周期;
S---拉氏变换算子。Z变换的定义
8.2节指出,一个连续函数经采样后,其采样函数式中:
上式收敛时,被定义为采样函数的Z变换。即注意:
1、是的Z变换式;2、只表征连续函数出现在采样时刻之间的信号特性不能反映.在采样时刻上的特性.(2)Z变换方法
Z变换方法多种,主要的有
1)级数求和法。以例说明例求单位价跃函数1(t)的Z变换.解:因为或者,由两边同乘以z-1得:
两式相减得:
例8-2
求2)部分分式法方法是,先求出连续函数的拉氏变换式,并部分分式展开。
例8-3巳知原函数的拉氏变换式为求其Z变换。解:对拉氏变换式用部分分式展开逐项进行Z变换(查Z变换表)有(3)Z变换的主要性质
1)线性性质2)延迟定理
说明:原函数在时域中延迟几个采样周期,相当于在象函数上乘以,算子的含义可表示时域中时滞环节,把脉冲延迟n个周期。3)超前定理若则4)复数位移定理5)终值定理若在平面上以原点为圆心的单位圆上和圆外没有极点或(z-1),F(z)全部极点位于Z平面单位圆内。则例8-6设的Z变换函数为求的终值。解:用终值定理结果是错的。?6)初值定理7)二、Z反变换
Z反变换是已知Z变换表达式F(Z),求离散序列f(nTs)或的过程。Z反变换的方法也有多种,主要方法有1.部分分式法(因式分解法,查表法)步骤:①先将变换式写成,并展开成部分分式,
②两端乘以Z。F(Z)=
③查Z变化表。=例8-8巳知,求其原函数。解写成两边同乘z查z变换表
2、幂级数法(长除法)
将表达式直接用长除法,求按降幂排列的展开式,便可直接写出脉冲序列的表达式。例己知求其反z变换。解可先改写z表达式用长除法,分子、分母相除有依z变换的定义,有
注:在实际应用中,常常只需要计算有限的几项.
是开放形式。
8.4线性离散系统的数学模型一、脉冲传递函数的概念定义:线性定常系统,在零初始条件下,系统输出信号的Z变换与输入信号的Z变换之比。用式子表示为二、开环脉冲传递函数的求法
系统由串联环节组成时,脉冲传递函数与采样开关的位置和数目有关。
1.串联环节之间有采样开关(图a)G(Z)=G1(Z)G2(Z)2.串联环节间无采样开关(图b)G(Z)=Z[G1(s)G2(s)]=G1G2(z)结论:有采样开关断开的线性环节串联时,系统脉冲传递函数等于各环节脉冲传递函数的积;无采样开关断开的线性环节串联时,系统其脉冲传递函数等于两个连续环节串联之后的Z变换。本结论可推广到n个环节。
例:设G1(s)=1/s,G2(s)=5/(s+5),分别求上述两种连接时的脉冲传递数。解:(1)二环节间有采样器
G(Z)=G1(Z)G2(Z)=Z[1/s]Z[1/(s+1)]=(2)二环节间无采样器(3)串联有零阶保持器P198例8-10求图8-13系统的脉冲传递函数三、闭环脉冲传递函数
由于采样开关在闭环系统中可以有多种配置的可能性,故闭环离散系统没有唯一的结构形式,通常须采用列出方程式,再消去中间信号变量求出闭环脉冲传递函数。
例求下图所示系统的闭环脉冲转递函数解由图取Z变换有又由图有由以上三式,消去中间变量可得该系统的闭环传递函数:
b(t)注:1、典型系统的传递函数或输出表达式见表8.1;2、元部件相同但采样开关的位置或个数不同,系统的传递函数不同;
3、有些结构的系统只有输出表达式但求不出闭环传递函数。8.5离散控制系统稳定性分析一、S平面与Z平面的对应(映射)关系S平面Z平面左半平面单位园内虚轴单位园上右半平面单位园外注:S平面上的左半平面,相当于Z平面上的单位园内;S平面的虚轴,相当于Z平面上的单位园上;S平面上的右半平面,相当于Z平面上的单位园外。由下列关系式得出上述结果
二、离散控制系统闭环稳定的充分、必要条件
离散控制系统闭环稳定的充分、必要条件是:系统的特征方程的根全部位于Z平面以原点为园心的单位园内。例8-11某离散控制系统如右图所示,采样周期为1s,系统能否稳定工作?解:系统的开环脉冲传递函数为系统的闭环脉冲传递函数为特征方程=0特征方程根(e-1=0.368)由于,在Z平面的单位园外,所以该系统是不稳定。三、离散系统的稳定性判据劳斯判据。具体方法、步骤:
1、求出特征方程式,
2、Z–W变换:令特征方程式中的,得到
3、用第三章劳斯判据的方法判稳。例8-12(p202)设某离散控制系统闭环特征方程为8.6离散控制系统的稳态误差分析离散系统中误差信号是指采样时刻的误差,其稳态误差是指系统到达稳定后误差脉冲序列。由于离散系统没有唯一的典型结构图形式,故不能给出一般的误差脉冲传递函数的计算公式,其稳态误差需要针对不同形式的离散系统来求取。离散系统稳态误差的分析、计算与连续系统的相类似,计算方法主要两种。1)用终值定理计算2)误差系数法一、用Z变换的终值定理计算
若系统稳定,即全部极点位于z平面单位图内,则可用z变换终值定理求出采样瞬时终值误差。方法、步骤如下:1、求出误差传递函数
2、求出误差Z变换式3、终值定理计算
二、误差系数方法
设单位反馈系统,开环传递函数为其中含有的积分环节个数N,表征系统的无差度。N=00型系统;N=1一型系统;N=2二型系统
称为位置误差系数。且有(1)阶跃输入时
由终值定理有N=0,
N=0,
N=0,
N=0,
N=0N>1(2)斜坡输入
,速度误差系数当N=0时,当N=1时,有限值,当N=2时,(3)加速度输入有,称为加速度误差系数。N=0、1时,N=2时,
r(t)y(t)例8-13求下列系统的稳态误差系统稳定误差系数8.7离散控制系统的动态性能分析
一、闭环极点(根的位置)与时间响应的关系
在连续系统里,如已知系统的极点位置,可估计出它的对应瞬态形状。离散系统中,若己知闭环脉冲传递函数的极点在z平面上单位圆内的分布与系统响应之间关系,这对系统设计、分析会有重要意义。分析:设闭环脉冲传递函数为)r(t当)=1(t),离散系统输出的z变换C(z)=Φ(z)R(z)=
展成部分分式为了方便讨论,假设无重极点
A=式中反Z变换根据Pj在单位圆的位置,可以确定C*(t)的动态响应形式(1)单极点位于Z平面实轴上①Pj>1闭环极点位于Z平面单位圆外的正实轴上,脉冲响应单调发散②Pj=1单位圆上,动态响应为等幅(常值)脉冲序列。③0<Pj<1单位圆正实轴单调递减。④-1<Pj<0
单位圆内负实轴,正负交替递减脉冲序列,⑤Pj=-1正负交替的等幅脉冲序列⑥Pj<
-1正负交替发散脉冲序列用图表示(2)极点(共轭复数极点)位于Z平面复平面上①|Pj|>1,振荡发散序列。|Pj|越大,发散越快;
②|Pj|=1,等幅振荡脉冲序列;
③|Pj|<1,收敛振荡,|Pj|越小,收敛越快。二、离散控制系统的动态性能估算离散控制系统的动态性能计算复杂。P203页提供式(8-39)、(8-39)作为离散控制系统的动态性能估算公式。
闭环极点最好是分布在单位园内右半部上并靠近原点的地方。8.8数字控制器的模拟化设计
一、设计原理先把数字调节器的脉冲传递函数看成为模拟调节器的传递函数,把离散系统视为一连续系统,再按连续系统的校正方法求出校正网络,最后对求出的模拟调节器的传递函数进行数字化。二、模拟调节器的传递函数进行数字化常用方法:
1、直接差分法
2、双线性变换法三、数字控制器的模拟化设计方法的步骤:
1、求出带零阶保持器的被控对象传递函数;
2、根据性能要求,用第六章开环对数频率特性的博德图法,求出校正网络的传递函数;
3、选择采样频率;
4、校正网络传递函数的离散化处理;
5、求出差分方程,计算机程序实现。四、例题(P212;例题8-17)
某计算机控制系统如图所示。设计数字控制器,使系统的开环截止频率大于或等于15,相位裕度大于或等于45度,开环增益(控制精度)大于或等于30。解
(1)设计模似校正装置根据静态性能要求,取开环放大系数为30;把零阶保持器近似为一个惯性环节设取采样周期为0.01秒,于是未校正前系统的开环传递函数为校正前系统的开环频率特性如图中实线所示计算截止频率与超前校正设计:开环截止频率约等于10(1/s),相位裕度约等于13.8度。相位裕度也可以通过下式计算:不满足性能指标。设计超前校正若串联校正取为
采用串联校正后,系统开环频率特性如图中虚线所示。由图有开环截止频率等于19,相位裕度等于60度,开环增益(控制精度)大于或等于30。满足性能要求值。(2)选取采样频率采样周期值己选为0.01秒。(3)模拟校正装置的离散化采用双线性变换的离散化方法:于是,数字控制器的脉冲传递函数为(4)化数字控制器的脉冲传递函数为差分方程代入各时间常数的值,有
为了避免运算过程中出现溢出,因此将控制量中误差项的传递系数缩小20倍,其增益的补偿将由系统中的功放实现。于是数字调节器的输入输出表达式为根据上式编制计算机控制算法程序。8.9数字控制器的离散化设计
数字控制器的离散化设计方法有Z平面的根迹法、W平面的博德图法、解析法(最少拍)等。这里只介绍W平面的博德图法。最少拍在<微机控制>课程中都有介绍。一、原理系统中的各环节都具有离散模型的型式下,通过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 住宅绿化养护合同
- 《榜样9》观后感:新时代共产党人的精神力量
- 电影评论中背景设定的艺术分析
- 2024高中地理第2章区域可持续发展第6节区域工业化与城市化进程-以珠江三角洲为例精练含解析湘教版必修3
- 2024高中物理第三章相互作用2弹力课后作业含解析新人教版必修1
- 2024高中语文第6单元墨子蚜第3课尚贤练习含解析新人教版选修先秦诸子蚜
- 2024高中语文第六课语言的艺术第4节入乡问俗-语言和文化练习含解析新人教版选修语言文字应用
- 2024高考化学一轮复习课练22化学反应的方向与限度含解析
- 校长在新学期第一次年级组长会议上讲话
- 小学一年级综合与实践教学计划
- 荣誉证书打印模板word格式
- 营养学与健康
- 单位工会组织活动方案(9篇)
- 人教版五年级数学下册(全册)同步练习随堂练习一课一练
- GB/T 29165.4-2015石油天然气工业玻璃纤维增强塑料管第4部分:装配、安装与运行
- 血液净化十大安全目标课件
- 鼻窦负压置换疗课件
- 国际森林日森林防火教育宣传主题班会PPT模板
- 药厂质量管理部QA人员岗位设置表
- 剑桥国际少儿英语“第三级”单词默写表
- (精心整理)高中生物必修二非选择题专题训练
评论
0/150
提交评论