




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数是上的偶函数,是的奇函数,且,则的值为()A. B. C. D.2.数列满足:,则数列前项的和为A. B. C. D.3.已知正三棱锥的所有顶点都在球的球面上,其底面边长为4,、、分别为侧棱,,的中点.若在三棱锥内,且三棱锥的体积是三棱锥体积的4倍,则此外接球的体积与三棱锥体积的比值为()A. B. C. D.4.已知命题若,则,则下列说法正确的是()A.命题是真命题B.命题的逆命题是真命题C.命题的否命题是“若,则”D.命题的逆否命题是“若,则”5.设函数若关于的方程有四个实数解,其中,则的取值范围是()A. B. C. D.6.下列说法正确的是()A.“若,则”的否命题是“若,则”B.在中,“”是“”成立的必要不充分条件C.“若,则”是真命题D.存在,使得成立7.若x,y满足约束条件的取值范围是A.[0,6] B.[0,4] C.[6, D.[4,8.已知命题,,则是()A., B.,.C., D.,.9.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A. B. C. D.10.已知当,,时,,则以下判断正确的是A. B.C. D.与的大小关系不确定11.设双曲线的一条渐近线为,且一个焦点与抛物线的焦点相同,则此双曲线的方程为()A. B. C. D.12.函数满足对任意都有成立,且函数的图象关于点对称,,则的值为()A.0 B.2 C.4 D.1二、填空题:本题共4小题,每小题5分,共20分。13.设、、、、是表面积为的球的球面上五点,四边形为正方形,则四棱锥体积的最大值为__________.14.设(其中为自然对数的底数),,若函数恰有4个不同的零点,则实数的取值范围为________.15.若复数z满足,其中i是虚数单位,则z的模是______.16.在三棱锥中,三条侧棱两两垂直,,则三棱锥外接球的表面积的最小值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知某种细菌的适宜生长温度为12℃~27℃,为了研究该种细菌的繁殖数量(单位:个)随温度(单位:℃)变化的规律,收集数据如下:温度/℃14161820222426繁殖数量/个2530385066120218对数据进行初步处理后,得到了一些统计量的值,如表所示:20784.11123.8159020.5其中,.(1)请绘出关于的散点图,并根据散点图判断与哪一个更适合作为该种细菌的繁殖数量关于温度的回归方程类型(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表格数据,建立关于的回归方程(结果精确到0.1);(3)当温度为27℃时,该种细菌的繁殖数量的预报值为多少?参考公式:对于一组数据,其回归直线的斜率和截距的最小二成估计分别为,,参考数据:.18.(12分)已知的图象在处的切线方程为.(1)求常数的值;(2)若方程在区间上有两个不同的实根,求实数的值.19.(12分)的内角,,的对边分别为,,,其面积记为,满足.(1)求;(2)若,求的值.20.(12分)已知函数,其中,为自然对数的底数.(1)当时,证明:对;(2)若函数在上存在极值,求实数的取值范围。21.(12分)如图,点为圆:上一动点,过点分别作轴,轴的垂线,垂足分别为,,连接延长至点,使得,点的轨迹记为曲线.(1)求曲线的方程;(2)若点,分别位于轴与轴的正半轴上,直线与曲线相交于,两点,且,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.22.(10分)在四棱锥中,底面是平行四边形,为其中心,为锐角三角形,且平面底面,为的中点,.(1)求证:平面;(2)求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.【详解】为上的奇函数,,而函数是上的偶函数,,,故为周期函数,且周期为故选:B【点睛】本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.2.A【解析】分析:通过对an﹣an+1=2anan+1变形可知,进而可知,利用裂项相消法求和即可.详解:∵,∴,又∵=5,∴,即,∴,∴数列前项的和为,故选A.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.3.D【解析】
如图,平面截球所得截面的图形为圆面,计算,由勾股定理解得,此外接球的体积为,三棱锥体积为,得到答案.【详解】如图,平面截球所得截面的图形为圆面.正三棱锥中,过作底面的垂线,垂足为,与平面交点记为,连接、.依题意,所以,设球的半径为,在中,,,,由勾股定理:,解得,此外接球的体积为,由于平面平面,所以平面,球心到平面的距离为,则,所以三棱锥体积为,所以此外接球的体积与三棱锥体积比值为.故选:D.【点睛】本题考查了三棱锥的外接球问题,三棱锥体积,球体积,意在考查学生的计算能力和空间想象能力.4.B【解析】
解不等式,可判断A选项的正误;写出原命题的逆命题并判断其真假,可判断B选项的正误;利用原命题与否命题、逆否命题的关系可判断C、D选项的正误.综合可得出结论.【详解】解不等式,解得,则命题为假命题,A选项错误;命题的逆命题是“若,则”,该命题为真命题,B选项正确;命题的否命题是“若,则”,C选项错误;命题的逆否命题是“若,则”,D选项错误.故选:B.【点睛】本题考查四种命题的关系,考查推理能力,属于基础题.5.B【解析】
画出函数图像,根据图像知:,,,计算得到答案.【详解】,画出函数图像,如图所示:根据图像知:,,故,且.故.故选:.【点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.6.C【解析】
A:否命题既否条件又否结论,故A错.B:由正弦定理和边角关系可判断B错.C:可判断其逆否命题的真假,C正确.D:根据幂函数的性质判断D错.【详解】解:A:“若,则”的否命题是“若,则”,故A错.B:在中,,故“”是“”成立的必要充分条件,故B错.C:“若,则”“若,则”,故C正确.D:由幂函数在递减,故D错.故选:C【点睛】考查判断命题的真假,是基础题.7.D【解析】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选D.8.B【解析】
根据全称命题的否定为特称命题,得到结果.【详解】根据全称命题的否定为特称命题,可得,本题正确选项:【点睛】本题考查含量词的命题的否定,属于基础题.9.A【解析】
分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题.、、都是假命题.故选:A【点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.10.C【解析】
由函数的增减性及导数的应用得:设,求得可得为增函数,又,,时,根据条件得,即可得结果.【详解】解:设,则,即为增函数,又,,,,即,所以,所以.故选:C.【点睛】本题考查了函数的增减性及导数的应用,属中档题.11.C【解析】
求得抛物线的焦点坐标,可得双曲线方程的渐近线方程为,由题意可得,又,即,解得,,即可得到所求双曲线的方程.【详解】解:抛物线的焦点为可得双曲线即为的渐近线方程为由题意可得,即又,即解得,.即双曲线的方程为.故选:C【点睛】本题主要考查了求双曲线的方程,属于中档题.12.C【解析】
根据函数的图象关于点对称可得为奇函数,结合可得是周期为4的周期函数,利用及可得所求的值.【详解】因为函数的图象关于点对称,所以的图象关于原点对称,所以为上的奇函数.由可得,故,故是周期为4的周期函数.因为,所以.因为,故,所以.故选:C.【点睛】本题考查函数的奇偶性和周期性,一般地,如果上的函数满足,那么是周期为的周期函数,本题属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
根据球的表面积求得球的半径,设球心到四棱锥底面的距离为,求得四棱锥的表达式,利用基本不等式求得体积的最大值.【详解】由已知可得球的半径,设球心到四棱锥底面的距离为,棱锥的高为,底面边长为,的体积,当且仅当时等号成立.故答案为:【点睛】本小题主要考查球的表面积有关计算,考查球的内接四棱锥体积的最值的求法,属于中档题.14.【解析】
求函数,研究函数的单调性和极值,作出函数的图象,设,若函数恰有4个零点,则等价为函数有两个零点,满足或,利用一元二次函数根的分布进行求解即可.【详解】当时,,由得:,解得,由得:,解得,即当时,函数取得极大值,同时也是最大值,(e),当,,当,,作出函数的图象如图,设,由图象知,当或,方程有一个根,当或时,方程有2个根,当时,方程有3个根,则,等价为,当时,,若函数恰有4个零点,则等价为函数有两个零点,满足或,则,即(1)解得:,故答案为:【点睛】本题主要考查函数与方程的应用,利用换元法进行转化一元二次函数根的分布以及.求的导数,研究函数的的单调性和极值是解决本题的关键,属于难题.15.【解析】
先求得复数,再由复数模的计算公式即得.【详解】,,则.故答案为:【点睛】本题考查复数的四则运算和求复数的模,是基础题.16.【解析】
设,可表示出,由三棱锥性质得这三条棱长的平方和等于外接球直径的平方,从而半径的最小值,得外接球表面积.【详解】设则,由两两垂直知三棱锥的三条棱的棱长的平方和等于其外接球的直径的平方.记外接球半径为,∴当时,.故答案为:.【点睛】本题考查三棱锥外接球表面积,解题关键是掌握三棱锥的性质:三条侧棱两两垂直的三棱锥的外接球的直径的平方等于这三条侧棱的平方和.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)作图见解析;更适合(2)(3)预报值为245【解析】
(1)由散点图即可得到答案;(2)把两边取自然对数,得,由计算得到,再将代入可得,最终求得,即;(3)将代入中计算即可.【详解】解:(1)绘出关于的散点图,如图所示:由散点图可知,更适合作为该种细菌的繁殖数量关于的回归方程类型;(2)把两边取自然对数,得,即,由.∴,则关于的回归方程为;(3)当时,计算可得;即温度为27℃时,该种细菌的繁殖数量的预报值为245.【点睛】本题考查求非线性回归方程及其应用的问题,考查学生数据处理能力及运算能力,是一道中档题.18.(1);(2)或.【解析】
(1)求出,由,建立方程求解,即可求出结论;(2)根据函数的单调区间,极值,做出函数在的图象,即可求解.【详解】(1),由题意知,解得(舍去)或.(2)当时,故方程有根,根为或,+0-0+极大值极小值由表可见,当时,有极小值0.由上表可知的减函数区间为,递增区间为,.因为,.由数形结合可得或.【点睛】本题考查导数的几何意义,应用函数的图象是解题的关键,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.19.(1);(2)【解析】
(1)根据三角形面积公式及平面向量数量积定义代入公式,即可求得,进而求得的值;(2)根据正弦定理将边化为角,结合(1)中的值,即可将表达式化为的三角函数式;结合正弦和角公式与辅助角公式化简,即可求得和,进而由正弦定理确定,代入整式即可求解.【详解】(1)因为,所以由三角形面积公式及平面向量数量积运算可得,所以.因为,所以.(2)因为,所以由正弦定理代入化简可得,由(1),代入可得,展开化简可得,根据辅助角公式化简可得.因为,所以,所以,所以为等腰三角形,且,所以.【点睛】本题考查了正弦定理在解三角形中的应用,三角形面积公式的应用,平面向量数量积的运算,正弦和角公式及辅助角公式的简单应用,属于基础题.20.(1)见证明;(2)【解析】
(1)利用导数说明函数的单调性,进而求得函数的最小值,得到要证明的结论;(2)问题转化为导函数在区间上有解,法一:对a分类讨论,分别研究a的不同取值下,导函数的单调性及值域,从而得到结论.法二:构造函数,利用函数的导数判断函数的单调性求得函数的值域,再利用零点存在定理说明函数存在极值.【详解】(1)当时,,于是,.又因为,当时,且.故当时,,即.所以,函数为上的增函数,于是,.因此,对,;(2)方法一:由题意在上存在极值,则在上存在零点,①当时,为上的增函数,注意到,,所以,存在唯一实数,使得成立.于是,当时,,为上的减函数;当时,,为上的增函数;所以为函数的极小值点;②当时,在上成立,所以在上单调递增,所以在上没有极值;③当时,在上成立,所以在上单调递减,所以在上没有极值,综上所述,使在上存在极值的的取值范围是.方法二:由题意,函数在上存在极值,则在上存在零点.即在上存在零点.设,,则由单调性的性质可得为上的减函数.即的值域为,所以,当实数时,在上存在零点.下面证明,当时,函数在上存在极值.事实上,当时,为上的增函数,注意到,,所以,存在唯一实数,使得成立.于是,当时,,为上的减
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中风中医护理查房
- 再教育人员心理健康教育
- 中交集团班组长安全培训
- 转向系统常规检查
- B超疑难病例分析与讨论
- 2025年河北中考化学实验
- 核心素养导向的教育评价应
- 正面管教教育读书分享
- 学前教育论文选题简单的
- 如何激励员工培训课件
- 边坡喷护检验批质量验收记录表
- GB∕T 31062-2014 聚合物多元醇
- 氧、氩、二氧化碳气体充装企业风险点分级管控资料
- 医学专题杏林中人乳腺穴位敷贴
- 公路水运工程施工安全标准化指南(42页)
- 人教版 2021-2022学年 五年级下册数学期末测试试卷(一)含答案
- 锡槽缺陷手册(上
- (完整版)全国校园篮球特色学校申报材料
- 西门子SAMA图DEH逻辑讲解
- 施工现场安全、文明施工检查评分表
- 管道支架重量计算表常用图文精
评论
0/150
提交评论