版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
SYSTEMIDENTIFICATIONTheoryfortheUserByLENNARTLJUNGLinkopingUniversity,SwedenC40COLLEGEOFELECTRICALENGINEERINGPartISystemsandModelsC41COLLEGEOFELECTRICALENGINEERINGCHAPTER4ModelsofLinearTime-InvariantSystemsC42COLLEGEOFELECTRICALENGINEERINGAmodelofasystemisadescriptionof(someof)itsproperties,suitableforacertainpurpose.Inordertoserveitspurpose,themodel
neednotbeatrueand
accuratedescriptionofthesystem.Systemidentificationisthesubjectofconstructingorselectingmodelsofdynamicalsystemstoservecertainpurposes.Thefirststepistodetermineaclassofmodelswithinwhichthesearchforthemostsuitablemodelistobeconducted.C43COLLEGEOFELECTRICALENGINEERING4.1LinearModelsandSetsofLinearModelsC44COLLEGEOFELECTRICALENGINEERINGInChapter2,alineartime-invariantmodelisspecifiedbytheimpulseresponse{g(k)}1,∞,thespectrumFv(w)=l|H(eiw)|2
ofthe
additivedisturbance,andtheprobabilitydensityfunction
(PDF)
ofthedisturbancee(t):
y(t)=G(q)u(t)+H(q)e(t)
fe(.),thePDFofe
(4.1)
with
G(q)=Sk=1,∞g(k)q-k,H(q)=
1
+Sk=1,∞h(k)q-k
(4.2)Inmostcases,itisimpracticaltomakethisspecificationbyenumeratingtheinfinitesequences{g(k)},{h(k)}andtogetherwiththefunctionfe(x).ThespecificationofGandHintermsofafinitenumberofnumericalvaluesisrequired.Typicalexamplesare:Rationaltransferfunctionandfinite-dimensionalstatespacedescriptionsC45COLLEGEOFELECTRICALENGINEERINGAlso,thePDFfeisoftennotspecifiedasafunction,butdescribedtypicallybythefirstandsecondmoments:
(4.3)Ife(t)isassumedtobeGaussian,thePDFisentirelyspecifiedby(4.3).
Thefinitenumberofcoefficientsin(4.1)areoftennotpossibletodetermineapriorifromknowledgeofthephysicalmechanism.Thedeterminationofallorsomeofthemmustbelefttoestimationprocedures.Denotingsuchparametersbythevectorq,thuswehavethefollowingdescription:
y(t)=G(q,q)u(t)+H(q,q)e(t)
(4.4a)
fe(x,q),thePDFofe(t);{e(t)}whitenoise
(4.4b)C46COLLEGEOFELECTRICALENGINEERINGUsing(3.20),theone-step-aheadpredictionfor(4.4)canbecomputedas
y^(t|q)=H-1(q,q)G(q,q)u(t)+[1-H-1(q,q)]y(t)
(4.6)Thepredictionisdenotedbyy^(t|q)toemphasizeitsdependenceonq.
Thispredictorformdoesnotdependonfe(x,q).ThetermpredictormodelisusedformodelsthatjustspecifyGandH
in(4.4)orintheform(4.6).Probabilisticmodelswillsignifydescriptions(4.4)thatgiveacompletecharacterizationoftheprobabilisticproperties.Inthefollowing,differentwaysofdescribing(4.4)intermsofqwillbediscussed.C47COLLEGEOFELECTRICALENGINEERING4.2AFamilyofTransfer-FunctionModelsC48COLLEGEOFELECTRICALENGINEERINGEquationError
ModelStructureC49COLLEGEOFELECTRICALENGINEERINGARXModelStructureThemostsimpleinput-outputrelationshipisobtainedbydescribingitasalineardifferenceequation:y(t)+a1y(t-1)+…+anay(t-na)=b1u(t-1)+…+bnbu(t-nb)+e(t)
(4.7)Sincethewhite-noiseterme(t)entersasadirecterror(Why?UseEq.4.6),themodelisoftencalledanequationerrormodel.Theadjustableparametersareq
=
[a1a2…anab1…bnb](4.8)IntroducingA(q)=1+a1q-1+…+anaq-naandB(q)=b1q-1+…bnbq-nb,(4.7)willcorrespondto(4.4)y=G
u+H
ewith G(q,q)=B(q)/A(q),H(q,q)=1/A(q)
(4.9)Themodel(4.7)isalsocalledanARXmodel,whereARreferstotheAutoRegressivepartA(q)y(t)andXtotheeXtrainputB(q)u(t).Whenna=
0,y(t)ismodeledasafiniteimpulseresponse(FIR).C410COLLEGEOFELECTRICALENGINEERINGTheequationerrormodelsethasaveryimportantproperty:
Thepredictordefinesalinearregression.
Thatis:y^(t|q)=B(q)u(t)+[1-A(q)]y(t)Thispropertymakesitaprimechoiceinmanyapplications.C411COLLEGEOFELECTRICALENGINEERINGLinearRegressionsWithoutastochasticframework,thepredictorforA
y
=
B
u
+
ecanbecomputedbyinserting(4.9)into(4.6)as: y^(t|q)=B(q)u(t)+[1-A(q)]y(t)
(4.10)(4.10)isalsoanaturalchoiceiftheterme(t)isconsideredtobe“insignificant”or“difficulttoguess”ignoringe.Thusitisperfectfor“deterministic”models.Introducingthevector
j(t)=[-
y(t
-1)…-
y(t
-
na)u(t
-1)…u(t
-
nb)]T
(4.11)
Then(4.10)canberewrittenas y^(t|q)=qTj(t)=jT(t)
q
(4.12)Thepredictorisascalarproductbetweenaknowndatavectorj(t)andtheparametervector
qtobeestimated.C412COLLEGEOFELECTRICALENGINEERINGSuchamodeliscalledalinearregressioninstatistics,andthevectorj(t)isknownastheregressionvector.IncasessomecoefficientsofthepolynomialsAandBareknown,wearriveatlinearregressionsoftheform y^(t|q)=jT(t)
q+m(t)
(4.13)wherem(t)isaknownterm.ImportantAdvantage:SomepowerfulandsimpleestimationmethodssuchasLScanbeappliedforthedeterminationofq.BasicDisadvantage:Itlackstheadequatefreedomindescribingthepropertiesofthedisturbanceterm.Thewhitenoisee(t)isassumedtogothroughthedenominatordynamicsofthesystem
(y=B/Au+1/Ae).C413COLLEGEOFELECTRICALENGINEERINGARMAXModelStructureTodescribethepropertiesofthedisturbance
term
moreadequately,weconsidertheequationerrorasamovingaverage(MA)ofwhitenoise: A(q)y(t)=B(q)u(t)+C(q)e(t)
(4.15)withC(q)=1+c1q-1+…+cncq-nc.TheARMAX
modelhasbecomeastandardtoolincontrolandeconometricsforbothsystemdescriptionandcontroldesign.ComparedwithlinearregressionsfortheARXmodel,theregressionfortheARMAXmodelispseudolinear.C414COLLEGEOFELECTRICALENGINEERINGPeudolinearRegressionsThepredictorHy^=Gu+[H-1]yforARMAXmodelAy=Bu+Ceis C(q)y^(t|q)=B(q)u(t)+[C(q)–A(q)]y(t)
(4.18)Adding[1–C(q)]y^(t|q)tobothsideof(4.18)gives y^(t|q)=B(q)u(t)+[1-A(q)]y(t)+[C(q)-1][y(t)-y^(t|q)](4.19)Introducethepredictionerror
e(t,q)=y(t)–y^(t|q) andthevectorj(t,q)=[-y(t-1)…-y(t-na)u(t-1)… u(t-nb)
e(t-1,
q)…e(t-nc,
q)]T(4.20)Then(4.19)canbewrittenasy^(t|q)=jT(t,q)
q
(4.21)Theequation(4.21)itselfisnotalinearregression,duetothenonlineareffectofqinthevectorj(t,
q),andisthereforecalledapseudolinearregreesion.C415COLLEGEOFELECTRICALENGINEERINGOutputError
ModelStructureC416COLLEGEOFELECTRICALENGINEERINGInequationerrormodel,thetransferfunctionsG(=B/A)andH(=1/AorC/A)havethepolynomialAasacommonfactorinthedenominators.Fromaphysicalpointofview,itismorenaturaltoparametrizethesetransferfunctionindependently.Supposingthattherelationshipbetweeninputandundisturbedoutputwcanbewrittenasalineardifferenceequation,andthatthedisturbancesconsistofwhitemeasurementnoise,thenwehave:
w(t)+f1w(t-1)+…+fnfw(t-nf)=b1u(t-1)+…+bnbu(t-nb)
(4.24a) y(t)=w(t)+e(t)
(4.24b)or y(t)=B(q)/F(q)*u(t)+e(t)
(4.25)(4.25)iscalledanoutputerror
(OE)
model.C417COLLEGEOFELECTRICALENGINEERINGe
uwy
Fig.4.3TheoutputerrormodelstructureTheparametervectortobedeterminedis
q=[b1b2…bnbf1f2…fnf]T
(4.26)Sincew(t)
is
neverobservedandisconstructedfromuusing(4.24a)w=B/F*u,itshouldcarryanindexq:
w(t,q)+f1w(t-1,q)+…+fnfw(t-nf,q)=b1u(t-1)+…+bnbu(t-nb)
(4.27)Comparingy
=
B/F*u
+
ewith(4.4),H(q,q)=1,thepredictoris y^(t|q)=B(q)/F(q)*u(t)=w(t,q)
(4.28)Notethaty^(t|q)isconstructedfrompastinputsonly.B/F+C418COLLEGEOFELECTRICALENGINEERINGWiththeaidofthevector
j(t,q)=[u(t
-1)…u(t
-
nb)-
w(t
-1,
q)…-
w(t
-
nf,
q)]T
(4.29)
wehave
y^(t|q)=jT(t,q)
q
(4.30)Note
thatin(4.29)the
w
(t
-1,
q)arenotobserved,but,using
(4.28),
theycanbe
computed: w(t
-
k,
q)=y^(t
-
k|q)=B/F
*
u(t
-
k),k=1,2,…,nf.C419COLLEGEOFELECTRICALENGINEERINGBox-JenkinsModelStructureThismodelissuggestedbyBoxandJenkinsin1970.Itisanaturaldevelopmentoftheoutputerrormodeltofurthermodel
thepropertiesoftheoutputerror: y(t)=B(q)/F(q)*u(t)+C(q)/D(q)*e(t)
(4.31)Thisisthemostnatural
finite-dimensionalparameterization:GandHareindependentlyparameterizedasrationalfunctions.Accordingto(4.6):y^(t|q)=H-1(q,q)G(q,q)u(t)+[1-H-1(q,q)]y(t),thepredictorfor(4.31)is
y^(t|q)=D(q)B(q)/(C(q)F(q))*u(t)+(C(q)
-
D(q))/C(q)*y(t)
(4.32)C420COLLEGEOFELECTRICALENGINEERINGAGeneralFamilyofModelStructuresC421COLLEGEOFELECTRICALENGINEERINGSelectingfromthefivepolynomialsused:A,B,C,D,andF,wecouldactuallyconstruct32differentmodelsets.Thesixpossibilitiesexplicitlydisplayedinthissectionarethemostcommonlyusedonesinpractice.Fortheconvenienceofexplicitalgorithmsandanalyticresults,ageneralizedmodelstructureshouldbeused: A(q)
y(t)=B(q)/F(q)*u(t)+C(q)/D(q)*e(t)
(4.33)From(4.6):y^(t|q)=H-1(q,q)
G(q,
q)
u(t)+[1
-
H-1(q,
q)]
y(t),thepredictorfor(4.33)is
y^(t|q)=D(q)B(q)/(C(q)F(q))*u(t)+[1
-
D(q)A(q)/C(q)]*y(t)
(4.35)C422COLLEGEOFELECTRICALENGINEERINGTable4.1SomecommonBlack-boxSISOModelsasSpecialCasesof(4.33)A
y=B/F
*
u+C/D
*
e
---------------------------------------------------------------------------PolynomialsUsedin(4.33)NameofModelStructure
---------------------------------------------------------------------------
B FIR
AB ARX
ABC ARMAX
AC ARMA
ABD ARARX
ABCD ARARMAX
BF OE(outputerror)
BFCD BJ(Box-Jenkins)
---------------------------------------------------------------------------C423COLLEGEOFELECTRICALENGINEERINGOtherModelExpansionsTheFIRmodelstructureG(q,
q)
=
Sk=1,n
bk
q-khastwoimportantadvantages:Itisalinearregression
(aspecialcaseofARX,(EE)).Itisanoutputerrormodel
(aspecialcaseofOE).Thismeansthatthemodelcanbeefficientlyestimatedandthatitisrobustagainstnoise.Thebasicdisadvantageisthatmanyparametersmaybeneeded.Apoleclosetotheunitcirclemakestheimpulseresponsedecayslowly,sonhastobelargetoapproximatethesystemwell.C424COLLEGEOFELECTRICALENGINEERINGAmodelwhichretainsthelinearregressionandoutputerrorfeaturewhileoffersbetterpossibilitiestotreatslowlydecayingimpulseresponsewouldlooklike
G(q,q)=Sk=1,nqkLk(q,a)
(4.47)
whereLk(q,a)representsafunctionexpansioninthedecayoperatorwithaauser-chosenparameter.Theparameteraistreatedasfixedtomake(4.47)alinearregression.Asimplechoiceis Lk(q,a)=q-k/(q
-
a)whereaisanestimateofthesystempole
closesttotheunitcircle.Asamoresophisticatedchoiceintermsoforthonormalbasisexpansion,Laguerrepolynomialshavebeenused: Lk(q,a)=1/(q
-
a)*[(1
–
a
q)/(q
-
a)]k-1
(4.48)withaanestimateofthedominatingpole
(timeconstant).C425COLLEGEOFELECTRICALENGINEERING4.3State-SpaceModelsC426COLLEGEOFELECTRICALENGINEERINGInthestate-space,therelationshipamongtheinput,noiseandoutputiswrittenasasystemoffirst-orderdifferentialor
differenceequationsusinganauxiliarystatevectorx(t).ThisdescriptionbecameanincreasinglydominatingapproachafterKalman’s(1960)workonpredictionandlinearquadraticcontrol.Theinsightsintophysicalmechanismsofthesystemcanmoreeasilybeincorporatedintostate-spacemodels.C427COLLEGEOFELECTRICALENGINEERINGContinuous-timeModelsBasedonPhysicalInsightWhythemodelisconstructedincontinuoustimeratherthanindiscretetime?Mostlawsofphysics
(Newton’slawofmotion,relationshipsinelectricalcircuits,etc.)areexpressedincontinuoustime.State-spacemodelingnormallyleadstoarepresentationx’(t)=F(q)
x(t)+G(q)
u(t)or[p
I-F(q)]
x(t)=G(q)
u(t)
(4.62)Herepisthedifferentiationoperator,FandGarematricesofn
x
nandn
x
m,andqisavectorofparametersthattypicallycorrespondtounknownvaluesofphysicalcoefficients,materialconstantsandthelike.Thestatevariablesxusuallyhavephysicalsignificance
(position,velocities,etc.)andthemeasuredoutputyistheknowncombinationofthestates.C428COLLEGEOFELECTRICALENGINEERINGLet
h(t)
bethe
measurements
obtainedwith
ideal,noise-free
sensors:
h(t)=H
x(t)
(4.63)
Thenthe
transferoperator
from
utohin
(4.63)is
h(t)=Gc(p,
q)u(t)withGc(p,
q)=H
[p
I-F(q)]-1G(q)
(4.64)Thisisthecontinuous-timetransfer-functionmodelofthesystemparameterizedintermsofphysicalcoefficients.Consideringthemeasurementimperfections
(affectingtheoutput)anddisturbancesactingon(4.62)
(affectingthestatevariables),somenoise-corruptedversionofh(t)isobtained.Thereareseveraldifferentpossibilitiestodescribethesenoiseanddisturbanceeffects.ThesimplestapproachwithmeasurementimperfectionsvT(kT)is y(kT)=H
x(kT)+vT(kT)=Gc(p,
q)u(t)+vT(kT)
(4.65)C429COLLEGEOFELECTRICALENGINEERINGSamplingtheTransferFunctionOnewaytotransportGc(p,q)toarepresentationinexplicitlydiscretetime:SupposetheinputisconstantoverthesamplingintervalT: u(t)=uk=u(kT),kT≤t≤(k+1)T(4.66)Thenx’(t)=F(q)
x(t)+G(q)
u(t)caneasilybesolvedfromt=kTtot=kT
+
Tas x(kT
+
T)=AT(q)
x(kT)+BT(q)
u(kT)
(4.67)whereAT(q)=eF(q)T,(4.68a,b)IntroducingqfortheforwardshiftofTtimeunits,wecanrewrite(4.67)as[q
I-AT(q)]x(kT)=BT(q)u(kT)or
h(kT)=GT(q,
q)u(kT)
(4.70) GT(q,
q)=H[q
I-AT(q)]-1BT(q)
(4.71)C430COLLEGEOFELECTRICALENGINEERINGHence(4.65)can
equivalently
begiveninthe
sampled-dataform
y(t)=GT(q,
q)u(t)+vT(t),t=T,2T,…(4.72)Note:Whenu(t)=uk
=u(kT)holds,noapproximationisinvolvedinthisrepresentation.InviewofAT(q)andBT(q),GT(q,
q)couldbequiteacomplicatedfunctionofq.ReadExample4.1withthefollowingquestions(p.95):Howmanydisturbancescanbeconsideredinastate-spacemodel?ComparingwithARX(EE)orOEmodel,whatisthemainadvantageanddisadvantageofusingastate-spacemodeltodescribethesystem?C431COLLEGEOFELECTRICALENGINEERINGEquations(4.67):x(kT
+
T)=AT(q)x(kT)+BT(q)u(kT)
and(4.65):
y(kT)=H
x(kT)+vT(kT)=Gc(p,
q)u(t)+vT(kT)
constitute
a
standarddiscrete-time
state-spacemodel.Forsimplicity,wetakeT
=
1anddropthecorrespondingindex,andintroduceamatrixrelatingxtoh:H=C(q),thuswehave
x(t
+1)=A(q)x(t)+B(q)u(t)
(4.80a)
y(t)=C(q)x(t)+v(t)
(4.80b)Correspondingto
y(t)=G(q,
q)u(t)+v(t)
(4.81) G(q,
q)=C(q)[q
I-A(q)]-1B(q)
(4.82)C432COLLEGEOFELECTRICALENGINEERINGNoiseRepresentationandtheTime-invariableKalmanFilterAstraightforwardbutentirelyvalidapproachtomodelthenoiseterm{v(t)}in(4.80)and(4.81)istopostulateitas v(t)=H(q,q)e(t)
(4.83)with{e(t)}beingwhitenoisewithvariancel.Forstate-spacedescription,itismorecommontosplitv(t)intomeasurementnoisev
(t)actingontheoutputandprocessnoisew(t)actingonthestates:x(t+1)
=
A(q)
x(t)
+
B(q)
u(t)
+
w
(t)y(t)
=
C(q)
x(t)
+
v
(t)
(4.84)withw
(t)andv
(t)beingindependentrandomvariableswithzeromeanvaluesandcovariancesE
w(t)
wT(t)
=
R1(q)E
v(t)
vT(t)=R2(q)E
w(t)
vT(t)
=
R12(q)
(4.85)Whenwandvarenotwhitenoises,extramodelingandextensionofthestatevectorarerequiredin(4.84)and(4.85).C433COLLEGEOFELECTRICALENGINEERINGApplythecelebratedKalmanfilter,theconditionalexpectationofy(t),givendatay(s)andu(s),s
≤
t-1,is,providedwandvareGaussianprocess,givenbyx^(t+1,q)=A(q)x^(t,q)+B(q)u(t)+K(q)[y(t)-C(q)x^(t,q)] y^(t|q)=C(q)x^(t,q)
(4.86)
HereK(q)isgivenas
whereP(q)isthepositivesemidefinitesolutionofthestationaryRiccatiequation:andisthecovariancematrixofthestateestimateerror:
Howtopredicty(t)in(4.84)?C434COLLEGEOFELECTRICALENGINEERINGTowritethepredictor
intermofinput,wehave:
y^(t|q)
=C(q)[q
I-A(q)+K(q)C(q)]-1B(q)u(t) +C(q)[q
I-A(q)+K(q)C(q)]-1K(q)y(t)
(4.88)C435COLLEGEOFELECTRICALENGINEERINGInnovationsRepresentationThepredicterrorof(4.86)isthepartofy(t)thatcannotbepredictedfrompastdata:“theinnovation”denotedby
e(t):y(t)-C(q)x^(t,q)=C(q)[x(t)-x^(t,q)]+v(t)=e(t)
(4.90)Then(4.86)canberewrittenas x^(t+1,q)=A(q)x^(t,q)+B(q)u(t)+K(q)e(t) y(t)=C(q)x^(t,q)+e(t)
(4.91a)Thecovarianceofe(t)canbefoundfrom(4.90)and(4.89): Ee(t)eT(t)=L(q)=C(q)P(q)CT(q)+R2(q)
(4.91b)Sincee(t)appearsexplicitly,thisrepresentationisknownastheinnovationsformofthestate-spacedescription.C436COLLEGEOFELECTRICALENGINEERINGDirectlyParameterizedInnovationsFormIn(4.91)theKalmangainK(q)iscomputedfromA,C,R1,R12andR2inthefairlycomplicatedmannergivenby(4.87)forK,P.ItisanattractiveideatoparameterizeK(q)
intermsofq
directly.Theimportantadvantageofthisisthatthepredictor
(4.88)becomesamuchsimplerfunctionofq.Suchamodelstructureiscalledadirectlyparameterizedinnovationsform.IfwehavenopriorknowledgeabouttheR-matrices,whichmeansthatmanyparametersareneededtodescribethem,thedirectparameterizationofK(q)isabetteralternative.Ifthephysicalinsightinto(4.84)entailsknowing,forexample,thattheprocessnoise
affectsonlyonestateandisindependentofmeasurementnoise,thecalculationofK(q)
via(4.85)and(4.87)isdoneeasilycomparedwiththedirectparameterizationofK(q).C437COLLEGEOFELECTRICALENGINEERINGGuidanceofthechoiceofparameterizedmodelsetsTwodifferentphilosophies
guidethechoiceofthemodel:Black-boxmodelstructure:Theyareflexiblemodelsetsthatcanaccommodateavarietyofsystems,withoutlookingintotheirinternalstructure.Theinput-outputmodelstructuresaswellascanonicallyparameterizedstate-spacemodelsareofthischaracter.Modelstructureswithphysicalparameters:Thephysicalinsightisincorporatedintothemodelsetsoastobringthenumberofadjustableparameters
downtowhatisactuallyunknownaboutthesystem.Continuous-timestate-spacemodelsaretypicalrepresentationsforthisapproach.C438COLLEGEOFELECTRICALENGINEERING4.6IdentifiabilityofSomeModelStructuresC439COLLEGEOFELECTRICALENGINEERINGIdentifiabilityConceptDefinition4.6.AmodelstructureMisgloballyidentifiableat q*ifM(q)=M(q*),q
eDM
q=q*(4.130)Theidentifiabilityconceptconcernstheuniquerepresentationofagivensystem.AgivensystemS: y(t)=G0(q)u(t)+H0(q)e(t)
(4.132)LetMbeamodelstructurebasedonone-step-aheadpredictorsfor y(t)=G(q,q)u(t)+H(q,q)e(t)
(4.133)DefinethesetDT(S,M)asthoseq-valuesinDMforwhichS=M(q): DT(S,M)={qeDM|G0(z)=G(z,q),H0(z)=H(z,q)almostallz} (4.134)ThissetisemptyincaseSnote
M.C440COLLEGEOFELECTRICALENGINEERINGNowsupposethatS
e
MsothatS=M(q0)forsomevalueq0.SupposethatMisgloballyidentifiableatq0.Than DT(S,M)={q0} (4.135)Note:
Mshouldbeselectedsothat(4.135)holdsforagivenS.SinceSisunknown,severaldifferentstructuresMshouldbetested.TheidentifiabilityconceptwillprovideusefulguidanceinfindinganMsuchthat(4.135)holds.C441COLLEGEOFELECTRICALENGINEERINGAmodelstructureisgloballyidentifiableatq*ifandonlyif G(z,q)=G(z,q*)andH(z,q)=H(z,q*) foralmostallz
q=q*
(4.136)Forlocalidentifiability,qwillbeconsideredtobeconfinedtoasufficientlysmallneighborhoodofq*.Globalidentifiabilityismoredifficulttodealwithingeneralterms.Weshallonlybrieflydiscussidentifiabilityofphysicalparametersandgivesomeresultsforgeneralblack-boxSISOmodels.C442COLLEGEOFELECTRICALENGINEERINGParametrizationsinTermsofPhysicalParametersForamodel y(t)=Gc(p,
q)u(t)+v(t)
(4.137)Asimpleridentifiabilitytesttoapplyis Gc(s,q)=Gc(s,q*)almostalls
q=q*
?
(4.138)Thisequationisnotsufficientfor(4.136)withbothGandHtoholdbutisareasonabletestforglobalidentifiabilityofthemodelatq*.But(4.138)isstilladifficultenoughproblemexceptforspecialstructures.C443COLLEGEOFELECTRICALENGINEERINGSISOTransfer-functionModelStructuresConsidertheARXmodelstructure G
(z,q)=B(z)/A(z),H(z,q)=1/A(z)
(4.139)with q=[a1…anab1…
bnb]TEqualityforH(z,
q)=H(z,
q*)in(4.136)impliesthattheA-polynomialscoincide,aa*,whichinturnimpliesthattheB-polynomialsmustcoincidefortheGtobeequal,bb*.Thatisq
q*.Itverifiesthat(4.136)holdsforallq*inthemodelstructure(4.139)---Thestructureisstrictlygloballyidentifiable.C444COLLEGEOFELECTRICALENGINEERINGFortheOEmodelstructure
(4.25)withordersnbandnf,atq=q*wehaveLetB~*(z)=znbB*(z)andqbeanarbitraryparametervalue,thenequation(4.136)
znf-nb
B~*
/
F~*
=
G(z,q*)
=
G(z,q)
=
B(z)
/
F(z)=
znf-nb
B~(z)
/
F~(z)canbewrittenas F~(z)B~*(z)–F~*(z)B~(z)=0(4.141)C445COLLEGEOFELECTRICALENGINEERING F~(z)B~*(z)–F~*(z)B~(z)=0(4.141)SinceF~*(z)isapolynomialofdegreenf,ithasnfzeros: F~*(ai)=0,i=1,…,nfSupposethatB~*andF~*arecoprime
B~*(ai)≠0.Then(4.141)impliesthat F~(ai)=0,i=1,…,nfConsequently,wehaveF~(z)
F~*(z),whichintu
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45073-2024国家公园标识
- GB/T 44940-2024鞋类和鞋类部件抗真菌性能定性评估试验方法(生长测试)
- 2025版环保物业合同小区共建项目3篇
- 体育竞技:管理创奖励运动精神
- 环保设备证照管理办法
- 眼镜加工制造手册
- 体育产业税收优惠指南
- 劳务派遣工作环境优化
- 娱乐行业证照规定
- 高端教育社区按揭合同模板
- 学校安全事故应急处置流程图
- 形式逻辑学全套课件
- 姜安《政治学概论》(第2版)笔记和典型题(含考研真题)详解
- 国开电大公共行政学形考任务二答案
- YY/T 0698.1-2011最终灭菌医疗器械包装材料第1部分:吸塑包装共挤塑料膜要求和试验方法
- GB/T 25249-2010氨基醇酸树脂涂料
- 元旦知识竞赛(试题24道含答案)
- 数码电子阴道镜EK-6000B说明书
- 手机摄影入门教程
- 《子路、曾皙、冉有、公西华侍坐》 课件46张
- 老年髋部骨折患者围术期麻醉管理课件
评论
0/150
提交评论