第八章矢量算法与场论初步张量算法与黎曼几何初步SECTION2_第1页
第八章矢量算法与场论初步张量算法与黎曼几何初步SECTION2_第2页
第八章矢量算法与场论初步张量算法与黎曼几何初步SECTION2_第3页
第八章矢量算法与场论初步张量算法与黎曼几何初步SECTION2_第4页
第八章矢量算法与场论初步张量算法与黎曼几何初步SECTION2_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

个人采集整理仅供参照学习§2场论初步一、场论的基本观点及梯度、散度与旋度[标量场]空间地域D的每点M(x,y,z)对应一个数目值(x,y,z),它在此空间地域D上就构成一个标量场,用点M(x,y,z)的标函数(x,y,z)表示.若M的地址用矢径r确立,则标量可以看作变矢r的函数=(r).文档来自于网络找寻比方温度场u(x,y,z),密度场(x,y,z),电位场e(x,y,z)都是标量场.[矢量场]空间地域D的每点M(x,y,z)对应一个矢量值R(x,y,z),它在此空间地域D上就组成一个矢量场,用点M(x,y,z)的矢量函数R(x,y,z)表示.若M的地址用矢径r确立,则矢量R可以看作变矢r的矢函数R(r):文档来自于网络找寻R(r)=X(x,y,z)i+Y(x,y,z)j+Z(x,y,z)k比方流速场(x,y,z),电场E(x,y,z),磁场H(x,y,z)都是矢量场.与标量场的状况同样,矢量场观点与矢函数观点,实质上是同样的.沿用这些术语(标量场、矢量场)是为了保留它们的自己起源与物理意义.文档来自于网络找寻[梯度]grad

=(

)=

=i+

j+

kx

y

z

x

y

z式中

=i

+j

+k

称为哈密顿算子

,也称为耐普拉算子

.grad

有的书刊中记作

del

.x

y

zgrad

的方向与过点

(x,y,z)的等量面

=C的法线方向

N重合,并指向

增添的一方,是函数变化率最大的方向,它的长度等于.文档来自于网络找寻N梯度拥有性质:grad(

)=

grad

grad

(

为常数)grad(

)=

grad

gradgradF(

)=F

grad1/12个人采集整理仅供参照学习[方导游数]=l·grad=cos+cos+coslxyz式中l=(cos,cos,cos)为方向l的单位矢量,,,为其方向角.方导游数为在方向l上的变化律,它等于梯度在方向l上的投影.[散度]divR=X+Y+Z=·R=div(X,Y,Z)xyz式中为哈密顿算子.散度拥有性质:div(a+b)=diva+divb(、为常数)div(a)=diva+agraddiv(a×b)=b·rota-a·rotb[旋度]rotR=(ZY)i+(XZ)j+(YX)k=ijk×R=yzyzzxxyxXYZ式中为哈密顿算子,旋度也称涡度,rotR有的书刊中记作curlR.旋度拥有性质:rot(a+b)=rota+rotb(、为常数)rot(a)=rota+a×gradrot(a×b)=(b·)a-(a·)b+(divb)a-(diva)b[梯度、散度、旋度混杂运算]运算grad作用到一个标量场产生矢量场grad,运算div作用到一个矢量场R产生标量场divR,运算rot作用到一个矢量场R产生新的矢量场文档来自于网络找寻2/12个人采集整理仅供参照学习rotR.这三种运算的混杂运算公式以下:divrotR=0rotgrad=0222divgrad=x2+y2+z2=graddivR=(R)rotrotR=×(×R)divgrad(+)=divgrad+divgrad(、为常数)divgrad()=divgrad+divgrad+2grad·gradgraddivR-rotrotR=R式中为哈密顿算子,=·=2为拉普拉斯算子.[势量场(守恒场)]若矢量场R(x,y,z)是某一标函数(x,y,z)的梯度,即R=grad或X=,Y=,Z=xyz则R称为势量场,标函数称为R的势函数.矢量场R为势量场的充分必需条件是:rotR=0,或XY,Y=Z,Z=X=yxzyxz势函数计算公式xy(x,y,z)=(x0,y0,z0)+Xx,y0,z0dx+Yx,y,z0dyx0y0zZx,y,zdzz0[无散场(管形场)]若矢量场R的散度为零,即divR=0,则R称为无散场.这时必存在一个无散场T,使R=rotT,对任意点M有文档来自于网络找寻T=1rotRdV4r3/12个人采集整理仅供参照学习式中r为dV到M的距离,积分是对整个空间进行的.[无旋场]若矢量场R的旋度为零,即rotR=0,则R称为无旋场.势量场总是一个无旋场,这时必存在一个标函数,使R=grad,而对任意点M有文档来自于网络找寻=-1divRdV4r式中r为dV到M的距离,积分是对整个空间进行的.二、梯度、散度、旋度在不同样坐标系中的表达式1.单位矢量的变换[一般公式]假定x=f(,,),y=g(,,),z=h(,,)把(,,)空间的一个地域一对一地连续照射为(x,y,z)空间的一个地域D,并假定f,g,h都有连续偏导数,由于对应是一对一的,因此有文档来自于网络找寻=(x,y,z),x,y,z,x,y,z再假定,,也有连续偏导数,则有dxxdxdxddyydydyddzzdzdzd或逆变换ddxdydzxyzddxdydzxyzddxdydzxyz沿dx,dy,dz方向的单位矢量记作i,j,k,沿d,d,d方向的单位矢量记作e,e,e,则有4/12个人采集整理仅供参照学习xiyjzke222xyzxyzijke222xyzxiyjzke222xyz[圆柱面坐标系的单位矢量]对于圆柱面坐标系(图8.11)xcosysin0,02,zzz单位矢量为ecosisinjesinicosjezk它们的偏导数为eee,ez0e,eeez0eeez0zzz[球面坐标系的单位矢量]对于球面坐标系(图8.12)xrsincosyrsinsin0r,02,0zrcos单位矢量为5/12个人采集整理仅供参照学习ersincosisinsinjcoskecoscosicossinjsinksinicosj它们的偏导数为reee0rrreere,e0er,ersine,eesinercosecose,2.矢量的坐标变换[一般公式]一个由(x,y,z)坐标系所表达的矢量可以用(,,)坐标系来表达:=(x,y,z=x+y+z=eee)ijk式中xxxx222222222xzxyyzxyzyyyy222222222xzxyyzxyzzzzz222222222xzxyyzxyz[圆柱面坐标系与直角坐标系的互换]由圆柱面坐标系到直角坐标系的变换公式xcossinysincoszz由直角坐标系到圆柱面坐标系的变换公式6/12个人采集整理仅供参照学习xcosysinxsinycoszz[球面坐标系与直角坐标系的互换]由球面坐标系到直角坐标系的变换公式xrsincoscoscossinyrsinsincossincoszrcossin由直角坐标系到球面坐标系的变换公式xsincosysinsinzcosxcoscosycossinzsinxsinycos3.各种算子在不同样坐标系中的表达式设U=U(x,y,z)是一个标函数,V=V(x,y,z)是一个矢函数.[在圆柱面坐标系中各种算子的表达式]哈密顿算子~=e+e1+ezz梯度gradU=~U=eU+e1U+ezUz散度divV=~·V=11zz旋度rotV=~×V=1zze+zze+11ez拉普拉斯算子U=divgradU=1U12U2U22z2[在球面坐标系中各种算子的表达式]~1+e1哈密顿算子~=er+errrsin~U+e1U+e梯度gradU=~U=er1Urrrsin7/12个人采集整理仅供参照学习~12r2散度divV=~·V=r1sin1rrrsinrsin旋度rotV=~×V=1sinerrsin+1r1rersinrr+1r1rerrr拉普拉斯算子U=divgradU=1rr2U1sin1U12Ur2rrsinrr2sin22三、曲线积分、曲面积分与体积导数[矢量的曲线积分及其计算公式]矢量场R(r)沿曲线的曲线积分定义为nR(r)·dr=lim~)·ri-1R(rir0i1n式中~的选择没关,曲线ri-1=ri-ri-1,右侧极限与ri由A到B(图8.13)若矢函数R(r)是连续的(就是它的三个重量是连续函数),曲线也是连续的,且有连续转动的切线,则曲线积分Rrdr存在.若R(r)为一力场,则P=Rrdr就等于把一质点沿着搬动时力R所作的功.矢量曲线积分的计算公式以下:8/12个人采集整理仅供参照学习Rrdr=XdxYdyZdzRrdr=Rrdr+Rrdr(图8.14)1212Rrdr=-RrdrRrTrdr=Rrdr+TrdrkRrdr=kRrdr(k为常数)[矢量的环流]若是为一闭曲线,则沿曲线的曲线积分Rrdr=XdxYdyZdz称为矢量场R(r)沿闭曲线的环流.势量场沿任何闭曲线的环流都等于零.若是R(r)为一势量场,且它的势函数为时,则曲线积分BRrdr=Rrdr=(B)-(A)A与连接A,B两点的路径没关,只依赖于A,B两点的地址(图8.15).[矢量的曲面积分]设S为一曲面,令N=cos,cos,cos表示在曲面S上一点的法线单位矢量,而dS=NdS表示面积矢量元素.又设(r)=(x,y,z)是定义在曲面S上的连续标函数,R(r)=(X(x,y,z),Y(x,y,z),Z(x,y,z))是定义在曲面S上的连续矢函数,则曲面积分有以下的三种形式:文档来自于网络找寻1标量场的通量(或流量)dS=dydzi+dzdxj+dxdykSSyzSzxSxy式中Syz,Szx,Sxy分别表示曲面S在Oyz平面,Ozx平面,Oxy平面上的投影.Sxy的正负号规定以下:当从z轴正方这里规定法线单位矢量与曲面散布在切面的双侧.9/12个人采集整理仅供参照学习向看去时,看到的是曲面S的正面,以为Sxy为正,若是看到的是曲面的反面,则以为Sxy为负(图8.16).矢量场的标通量R·dS=Xdydz+Ydzdx+ZdxdySSyzSzxSxy式中Syz等的意义同1.矢量场的矢通量R×dS=(Zj-Yk)dydz+(Xk-Zi)dzdx+(Yi-Xj)dxdySSyzSzxSxy式中Syz等的意义同1.[矢量的体积导数]若是S是包围体积V的闭曲面,并包括点r,则沿闭曲面S的曲面积分(dS,R·dS,R×dS)与体积V之比,当V趋于零时(即它的直径0)的极限称为标量场SSS(或矢量场R)在点r处的体积导数(或空间导数).文档来自于网络找寻1标量场的体积导数就是它的梯度:dSgrad=limSV0V矢量场R的体积导数之一是它的散度:RdSdivR=limSV0V矢量场R的另一个体积导数是它的旋度:RdSrotR=-limSV0V四、矢量的积分定理[高斯公式]divRdV=R·dS=R·NdSVSS10/12个人采集整理仅供参照学习即XYZdxdydzXcosYcosZcosdSVxyzS式中S为空间地域V的界线曲面,N=cos,cos,cos为在S上一点的法线单位矢量,R(r)=(X(x,y,z),Y(x,y,z),Z(x,y,z))在V+S上有连续偏导数.[斯托克斯公式]rotR·dS=rotR·NdS=R·drSSL即ZYdydzXZdzdxYXSyzzxxdxdyy=ZYcosXZcosYXcosdSSyzzxxy=XdxYdyZdzL式中S为必然曲面的一侧,L为曲面S的闭界线曲线(L的正向与N组成右手系).S的每点有切面,其方向连续地依赖于曲面上的点,而界线曲线L上的每点都有切线(图8.1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论