2023届江苏省宜兴市洑东中学九年级数学第一学期期末学业水平测试模拟试题含解析_第1页
2023届江苏省宜兴市洑东中学九年级数学第一学期期末学业水平测试模拟试题含解析_第2页
2023届江苏省宜兴市洑东中学九年级数学第一学期期末学业水平测试模拟试题含解析_第3页
2023届江苏省宜兴市洑东中学九年级数学第一学期期末学业水平测试模拟试题含解析_第4页
2023届江苏省宜兴市洑东中学九年级数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.全等图形是相似比为1的相似图形,因此全等是特殊的相似,我们可以由研究全等三角形的思路,提出相似三角形的问题和研究方法.这种其中主要利用的数学方法是()A.代入法 B.列举法 C.从特殊到一般 D.反证法2.下列式子中表示是关于的反比例函数的是()A. B. C. D.3.二次函数图象上部分点的坐标对应值列表如下:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的对称轴是()A.直线x=﹣3 B.直线x=﹣2 C.直线x=﹣1 D.直线x=04.如图,在Rt△ABC中,∠C=90°,点P是边AC上一点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,BD平分∠ABC,以下四个结论①△BQD是等腰三角形;②BQ=DP;③PA=QP;④=(1+)2;其中正确的结论的个数()A.1个 B.2个 C.3个 D.4个5.下列结论正确的是()A.垂直于弦的弦是直径 B.圆心角等于圆周角的2倍C.平分弦的直径垂直该弦 D.圆内接四边形的对角互补6.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是()A.27° B.34° C.36° D.54°7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于A.44° B.60° C.67° D.77°8.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t= C.t= D.t=9.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y.则下列图象中,能表示y与x的函数关系的图象大致是()A. B. C. D.10.对于二次函数y=﹣(x﹣2)2﹣3,下列说法正确的是()A.当x>2时,y随x的增大而增大 B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣3) D.图象与x轴有两个交点二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,原点O是等边三角形ABC的重心,若点A的坐标是(0,3),将△ABC绕点O逆时针旋转,每秒旋转60°,则第2018秒时,点A的坐标为.12.若关于的一元二次方程的一个根是,则的值是_________.13.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.14.若a、b、c、d满足ab=cd=15.山西拉面,又叫甩面、扯面、抻面,是西北城乡独具地方风味的面食名吃,为山西四大面食之一.将一定体积的面团做成拉面,面条的总长度与粗细(横截面面积)之间的变化关系如图所示(双曲线的一支).如果将这个面团做成粗为的拉面,则做出来的面条的长度为__________.16.在Rt△ABC中,两直角边的长分别为6和8,则这个三角形的外接圆的直径长为__.17.在数、、中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数图象的概率是________________.18.2018年我国新能源汽车保有量居世界前列,2016年和2018年我国新能源汽车保有量分别为51.7万辆和261万辆.设我国2016至2018年新能源汽车保有量年平均增长率为,根据题意,可列方程为______.三、解答题(共66分)19.(10分)已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(-1,0),与y轴交于点C,求直线BC与这个二次函数的解析式;(3)在直线BC上方的抛物线上有一动点D,DEx轴于E点,交BC于F,当DF最大时,求点D的坐标,并写出DF最大值.20.(6分)如图,小巷左右两侧是竖直的墙,一架梯子AC斜靠在右墙,测得梯子与地面的夹角为45°,梯子底端与墙的距离CB=2米,若梯子底端C的位置不动,再将梯子斜靠在左墙,测得梯子与地面的夹角为60°,则此时梯子的顶端与地面的距离A'D的长是多少米?(结果保留根号)21.(6分)如果一个直角三角形的两条直角边的长相差2cm,面积是24,那么这个三角形的两条直角边分别是多少?22.(8分)如图,直线与双曲线相交于点A,且,将直线向左平移一个单位后与双曲线相交于点B,与x轴、y轴分别交于C、D两点.(1)求直线的解析式及k的值;(2)连结、,求的面积.23.(8分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.24.(8分)如图,的顶点坐标分别为,,.(1)画出关于点的中心对称图形;(2)画出绕原点逆时针旋转的,直接写出点的坐标为_________;(3)若内一点绕原点逆时针旋转的对应点为,则的坐标为____________.(用含,的式子表示)25.(10分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.26.(10分)如图所示是某路灯灯架示意图,其中点A表示电灯,AB和BC为灯架,l表示地面,已知AB=2m,BC=5.7m,∠ABC=110°,BC⊥l于点C,求电灯A与地面l的距离.(结果精确到0.1m.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据全等是特殊的相似,即可得到“提出相似三角形的问题和研究方法”是从特殊到一般.【详解】∵全等图形是相似比为1的相似图形,全等是特殊的相似,∴由研究全等三角形的思路,提出相似三角形的问题和研究方法,是从特殊到一般的数学方法.故选C.【点睛】本题主要考查研究相似三角形的数学方法,理解相似三角形和全等三角形的联系,是解题的关键.2、C【解析】根据反比例函数的定义进行判断.【详解】解:A.是正比例函数,此选项错误;B.是正比例函数,此选项错误;C.是反比例函数,此选项正确;D.是一次函数,此选项错误.故选:C.【点睛】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为(k≠0)的形式.3、B【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【详解】解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣1.故选B.【点睛】本题考查二次函数的图象.4、C【分析】利用平行线的性质角、平分线的定义、相似三角形的判定和性质一一判断即可.【详解】解:∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴△BQD是等腰三角形,故①正确,∵QD=DF,∴BQ=PD,故②正确,∵PQ∥AB,∴=,∵AC与BC不相等,∴BQ与PA不一定相等,故③错误,∵∠PCQ=90°,QD=PD,∴CD=QD=DP,∵△ABC∽△PQC,∴=()2=()2=(1+)2,故④正确,故选:C.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.5、D【分析】分别根据垂径定理、圆周角定理及圆内接四边形的性质对各选项进行逐一分析即可.【详解】解:A,垂直于弦的弦不一定是直径,故本选项错误;B,在同圆或等圆中,同弧或等弧所对的圆心角等于圆周角的2倍,故本选项错误;C,平分弦的直径垂直该弦(非直径),故本选项错误;D,符合圆内接四边形的性质故本选项正确.故选:D.【点睛】本题主要考查了垂径定理、圆周角定理以及圆内接四边形的基本性质.6、C【分析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.【详解】解:∵AB与⊙O相切于点A,

∴OA⊥BA.

∴∠OAB=90°.

∵∠CDA=27°,

∴∠BOA=54°.

∴∠B=90°-54°=36°.故选C.考点:切线的性质.7、C【解析】分析:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°-∠A=68°.由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°.∴.故选C.8、B【解析】试题分析:根据行程问题的公式路程=速度×时间,可知汽车行驶的时间t关于行驶速度v的函数关系式为t=.考点:函数关系式9、D【详解】解:过点P作PF⊥BC于F,∵PE=PB,∴BF=EF,∵正方形ABCD的边长是1,∴AC=,∵AP=x,∴PC=-x,∴PF=FC=,∴BF=FE=1-FC=,∴S△PBE=BE•PF=,即(0<x<),故选D.【点睛】本题考查动点问题的函数图象.10、B【分析】根据二次函数的性质对进行判断;通过解方程﹣(x﹣2)2﹣3=0对D进行判断即可.【详解】∵二次函数y=﹣(x﹣2)2﹣3,∴当x>2时,y随x的增大而减小,故选项A错误;当x=2时,该函数取得最大值,最大值是﹣3,故选项B正确;图象的顶点坐标为(2,﹣3),故选项C错误;当y=0时,0=﹣(x﹣2)2﹣3,即,无解,故选项D错误;故选:B.【点睛】本题考查了二次函数的图象和性质,把求二次函数与轴的交点问题转化为解关于的一元二次方程问题可求得交点横坐标,牢记其的顶点坐标、对称轴及开口方向是解答本题的关键.二、填空题(每小题3分,共24分)11、【分析】△ABC绕点O逆时针旋转一周需6秒,而2018=6×336+2,所以第2018秒时,点A旋转到点A′,∠AOA′=120°,OA=OA′=3,作A′H⊥x轴于H,然后通过解直角三角形求出A′H和OH即可得到A′点的坐标.【详解】解:∵360°÷60°=6,2018=6×336+2,∴第2018秒时,点A旋转到点B,如图,∠AOA′=120°,OA=OA′=3,作A′H⊥x轴于H,∵∠A′OH=30°,∴A′H=OA′=,OH=A′H=,∴A′(﹣,﹣).故答案为(﹣,﹣).【点睛】考核知识点:解直角三角形.结合旋转和解直角三角形知识解决问题是关键.12、1【分析】先利用一元二次方程根的定义得到a-b=﹣4,再把2019﹣a+b变形为2019﹣(a-b),然后利用整体代入的方法计算.【详解】把代入一元二次方程,得:,即:,∴,故答案为:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.13、【解析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有7个球,其中红球有3个,∴从袋子中随机取出1个球,它是红球的概率是,故答案为:.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14、3【解析】根据等比性质求解即可.【详解】∵ab∴a+cb+d=a故答案为:34【点睛】本题考查了比例的性质,主要利用了等比性质.等比性质:在一个比例等式中,两前项之和与两后项之和的比例与原比例相等.对于实数a,b,c,d,且有b≠0,d≠0,如果ab=c15、1【分析】因为面条的总长度y(cm)是面条粗细(横截面面积)x(cm2)反比例函数,且从图象上可看出过(0.05,3200),从而可确定函数式,再把x=0.16代入求出答案.【详解】解:根据题意得:y=,过(0.04,3200).

k=xy=0.04×3200=128,

∴y=(x>0),

当x=0.16时,

y==1(cm),

故答案为:1.【点睛】此题参考反比例函的应用,解题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.16、1.【分析】根据题意,写出已知条件并画出图形,然后根据勾股定理即可求出AB,再根据圆周角为直角所对的弦是直径即可得出结论.【详解】如图,已知:AC=8,BC=6,由勾股定理得:AB==1,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是1;故答案为:1.【点睛】此题考查的是求三角形的外接圆的直径,掌握圆周角为直角所对的弦是直径是解决此题的关键.17、【分析】列表得出所有等可能的情况数,找出刚好在一次函数y=x-2图象上的点个数,即可求出所求的概率.【详解】列表得:

-112-1---(1,-1)(2,-1)1(-1,1)---(2,1)2(-1,2)(1,2)---所有等可能的情况有6种,其中该点刚好在一次函数y=x-2图象上的情况有:(1,-1)共1种,则故答案为:【点睛】此题考查了列表法与树状图法,以及一次函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.18、【分析】根据增长率的特点即可列出一元二次方程.【详解】设我国2016至2018年新能源汽车保有量年平均增长率为,根据题意,可列方程为故答案为:.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意列出方程.三、解答题(共66分)19、(1)m>-1;(2)y=-x+3,y=-x2+2x+3;(3)D(),DF=【分析】(1)利用判别式解答即可;(2)将点A的坐标代入抛物线y=-x2+2x+m即可求出解析式,由抛物线的解析式求出点B(3,0),设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)代入y=kx+b中即可求出直线BC的解析式;(3)由点D在抛物线上,设坐标为(x,-x2+2x+3),F在直线AB上,坐标为(x,-x+3),得到DF=-x2+2x+3-(-x+3)=-x2+3x=,利用顶点式解析式的性质解答即可.【详解】(1)当抛物线与x轴有两个交点时,∆>0,即4+4m>0,∴m>-1;(2)∵点A(-1,0)在抛物线y=-x2+2x+m上,∴-1-2+m=0,∴m=3,∴抛物线解析式为y=-x2+2x+3,且C(0,3),当x=0时,-x2+2x+3=0,解得x=-1,或x=3,∴B(3,0),设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)代入y=kx+b中,得:,解得,∴直线AB的解析式为y=-x+3;(3)点D在抛物线上,设坐标为(x,-x2+2x+3),F在直线AB上,坐标为(x,-x+3),∴DF=-x2+2x+3-(-x+3)=-x2+3x=,∴当时,DF最大,为,此时D的坐标为().【点睛】此题考查了利用判别式已知抛物线与坐标轴的交点个数求未知数的取值范围,利用待定系数法求函数解析式,利用顶点式解析式的性质求出线段的最值.20、此时梯子的顶端与地面的距离A'D的长是米【分析】由Rt△ABC求出梯子的长度,再利用Rt△A'DC,求得离A'D的长.【详解】解:在Rt△ABC中,∵∠BCA=45°,∴AB=BC=2米,∴米,∴A'C=AC=米,∴在Rt△A'DC中,A'D=A'C•sin60°=×=,∴此时梯子的顶端与地面的距离A'D的长是米.【点睛】此题考查解直角三角形的实际应用,根据题意构建直角三角形是解题的关键,题中注意:梯子的长度在两个三角形中是相等的.21、一条直角边的长为6cm,则另一条直角边的长为8cm.【分析】可设较短的直角边为未知数x,表示出较长的边,根据直角三角形的面积为24列出方程求正数解即可.【详解】解:设一条直角边的长为xcm,则另一条直角边的长为(x+2)cm.根据题意列方程,得.解方程,得:x1=6,x2=(不合题意,舍去).∴一条直角边的长为6cm,则另一条直角边的长为8cm.【点睛】本题考查一元二次方程的应用;用到的知识点为:直角三角形的面积等于两直角边积的一半.22、(1)直线的解析式为,k=1;(2)2.【解析】(1)根据平移的性质即可求得直线的解析式,由直线和即可求得A的坐标,然后代入双曲线求得k的值;(2)作轴于E,轴于F,联立方程求得B点的坐标,然后根据,求得即可.【详解】解:(1)根据平移的性质,将直线向左平移一个单位后得到,∴直线的解析式为,∵直线与双曲线相交于点A,∴A点的横坐标和纵坐标相等,∵,∴,;(2)作轴于E,轴于F,解得或∴,∵,∴.【点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会构建方程组确定交点坐标,属于中考常考题型.23、(1)y;(2)yx+1.【解析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程,求得b的值,进而求得a的值,根据待定系数法,可得答案.【详解】(1)由题意得:k=xy=2×3=6,∴反比例函数的解析式为y;(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),∵反比例函数y的图象经过点B(a,b),∴b,∴AD=3,∴S△ABCBC•ADa(3)=6,解得a=6,∴b1,∴B(6,1),设AB的解析式为y=kx+b,将A(2,3),B(6,1)代入

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论