版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm2.已知反比例函数的图象经过点(2,-2),则k的值为A.4 B. C.-4 D.-23.如图,在△ABC中,DE∥BC,BE和CD相交于点F,且S△EFC=3S△EFD,则S△ADE:S△ABC的值为()A.1:3 B.1:8 C.1:9 D.1:44.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%5.如图,已知二次函数的图象与轴交于点(-1,0),与轴的交点在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线,下列结论不正确的是()A. B. C. D.6.如图,若A、B、C、D、E,甲、乙、丙、丁都是方格纸中的格点,为使△ABC与△DEF相似,则点F应是甲、乙、丙、丁四点中的().A.甲 B.乙 C.丙 D.丁7.如图,BC是⊙O的直径,点A、D在⊙O上,若∠ADC=48°,则∠ACB等于()度.A.42 B.48 C.46 D.508.如图,正方形ABCD中,对角线AC,BD交于点O,点M,N分别为OB,OC的中点,则cos∠OMN的值为()A. B. C. D.19.如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为4,且∠B=2∠D,连接AC,则线段AC的长为()A.4 B.4 C.6 D.810.若2y-7x=0,则x∶y等于()A.2∶7 B.4∶7 C.7∶2 D.7∶4二、填空题(每小题3分,共24分)11.已知,是抛物线上两点,该抛物线的解析式是__________.12.已知两个相似三角形的相似比为2︰5,其中较小的三角形面积是,那么另一个三角形的面积为.13.如图,Rt△ABC中,∠C=90°,AC=30cm,BC=40cm,现利用该三角形裁剪一个最大的圆,则该圆半径是_____cm.14.已知函数的图象如图所示,点P是y轴负半轴上一动点,过点P作y轴的垂线交图象于A、B两点,连接OA、OB.下列结论;①若点M1(x1,y1),M2(x2,y2)在图象上,且x1<x2<0,则y1<y2;②当点P坐标为(0,﹣3)时,△AOB是等腰三角形;③无论点P在什么位置,始终有S△AOB=7.5,AP=4BP;④当点P移动到使∠AOB=90°时,点A的坐标为(2,﹣).其中正确的结论为___.15.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为________cm.16.如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为_____.17.小明掷一枚硬币10次,有9次正面向上,当他掷第10次时,正面向上的概率是_____.18.如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上,AD=OA=2,则图中阴影部分的面积为______.三、解答题(共66分)19.(10分)为了响应市政府号召,某校开展了“六城同创与我同行”活动周,活动周设置了“A:文明礼仪,B:生态环境,C:交通安全,D:卫生保洁”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.(1)本次随机调查的学生人数是______人;(2)请你补全条形统计图;(3)在扇形统计图中,“B”所在扇形的圆心角等于______度;(4)小明和小华各自随机参加其中的一个主题活动,请用画树状图或列表的方式求他们恰好选中同一个主题活动的概率.20.(6分)某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量(件与销售单价(元之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量与销售单价之间的函数关系式;(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?21.(6分)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.22.(8分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.23.(8分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B,(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.24.(8分)全国第二届青年运动会是山西省历史上第一次举办的大型综合性运动会,太原作为主赛区,新建了很多场馆,其中在汾河东岸落成了太原水上运动中心,它的终点塔及媒体中心是一个以“大帆船”造型(如图1),外观极具创新,这里主要承办赛艇、皮划艇、龙舟等项目的比赛.“青春”数学兴趣小组为了测量“大帆船”AB的长度,他们站在汾河西岸,在与AB平行的直线l上取了两个点C、D,测得CD=40m,∠CDA=110°,∠ACB=18.5°,∠BCD=16.5°,如图1.请根据测量结果计算“大帆船”AB的长度.(结果精确到0.1m,参考数据:sin16.5°≈0.45,tan16.5°≈0.50,≈1.41,≈1.73)25.(10分)如图,反比例函数()的图象与一次函数的图象交于,两点.(1)分别求出反比例函数与一次函数的表达式.(2)当反比例函数的值大于一次函数的值时,请根据图象直接写出的取值范围.26.(10分)如图,在△ABC中,DE∥BC,,M为BC上一点,AM交DE于N.(1)若AE=4,求EC的长;(2)若M为BC的中点,S△ABC=36,求S△ADN的值.
参考答案一、选择题(每小题3分,共30分)1、C【解析】根据相似三角形三边对应成比例进行求解即可得.【详解】设另一个三角形的最长边为xcm,由题意得5:2.5=9:x,解得:x=4.5,故选C.【点睛】本题考查了相似三角形的性质,熟知相似三角形对应边成比例是解题的关键.2、C【解析】∵反比例函数的图象经过点(2,-2),∴.故选C.3、C【分析】根据题意,易证△DEF∽△CBF,同理可证△ADE∽△ABC,根据相似三角形面积比是对应边比例的平方即可解答.【详解】∵S△EFC=3S△DEF,∴DF:FC=1:3(两个三角形等高,面积之比就是底边之比),∵DE∥BC,∴△DEF∽△CBF,∴DE:BC=DF:FC=1:3同理△ADE∽△ABC,∴S△ADE:S△ABC=1:9,故选:C.【点睛】本题考查相似三角形的判定和性质,解题的关键是掌握相似三角形面积比是对应边比例的平方.4、C【解析】分析:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.详解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选C.点睛:本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.5、D【分析】根据二次函数的图象和性质、各项系数结合图象进行解答.【详解】∵(-1,0),对称轴为∴二次函数与x轴的另一个交点为将代入中,故A正确将代入中②①∴∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴∴∴,故B正确;∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴抛物线顶点纵坐标∵抛物线开口向上∴∴,故C正确∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴将代入中①②∴∴,故D错误,符合题意故答案为:D.【点睛】本题主要考查了二次函数的图象与函数解析式的关系,可以根据各项系数结合图象进行解答.6、A【分析】令每个小正方形的边长为1,分别求出两个三角形的边长,从而根据相似三角形的对应边成比例即可找到点F对应的位置.【详解】解:根据题意,△ABC的三边之比为要使△ABC∽△DEF,则△DEF的三边之比也应为经计算只有甲点合适,
故选:A.
【点睛】本题考查了相似三角形的判定定理:
(1)两角对应相等的两个三角形相似.
(2)两边对应成比例且夹角相等的两个三角形相似.
(3)三边对应成比例的两个三角形相似.7、A【分析】连接AB,由圆周角定理得出∠BAC=90°,∠B=∠ADC=48°,再由直角三角形的性质即可得出答案.【详解】解:连接AB,如图所示:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠ADC=48°,∴∠ACB=90°-∠B=42°;故选:A.【点睛】本题考查了圆周角定理以及直角三角形的性质;熟练掌握圆周角定理是解题的关键.8、B【详解】∵正方形对角线相等且互相垂直平分∴△OBC是等腰直角三角形,∵点M,N分别为OB,OC的中点,∴MN//BC∴△OMN是等腰直角三角形,∴∠OMN=45°∴cos∠OMN=9、B【分析】连接OA,OC,利用内接四边形的性质得出∠D=60°,进而得出∠AOC=120°,利用含30°的直角三角形的性质解答即可.【详解】连接OA,OC,过O作OE⊥AC,∵四边形ABCD是⊙O的内接四边形,∠B=2∠D,∴∠B+∠D=3∠D=180°,解得:∠D=60°,∴∠AOC=120°,在Rt△AEO中,OA=4,∴AE=2,∴AC=4,故选:B.【点睛】此题考查内接四边形的性质,关键是利用内接四边形的性质得出∠D=60°.10、A【分析】由2y-7x=0可得2y=7x,再根据等式的基本性质求解即可.【详解】解:∵2y-7x=0∴2y=7x∴x∶y=2∶7故选A.【点睛】比例的性质,根据等式的基本性质2进行计算即可,是基础题,比较简单.二、填空题(每小题3分,共24分)11、【分析】将A(0,3),B(2,3)代入抛物线y=-x2+bx+c的解析式,可得b,c,可得解析式.【详解】∵A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,∴代入得,解得:b=2,c=3,∴抛物线的解析式为:y=-x2+2x+3.故答案为:y=-x2+2x+3.【点睛】本题主要考查了待定系数法求解析式,利用代入法解得b,c是解答此题的关键.12、25【解析】试题解析:∵两个相似三角形的相似比为2:5,∴面积的比是4:25,∵小三角形的面积为4,∴大三角形的面积为25.故答案为25.点睛:相似三角形的面积比等于相似比的平方.13、1.【分析】根据勾股定理求出的斜边AB,再由等面积法,即可求得内切圆的半径.【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC的内切圆,设AC边上的切点为D,连接OA、OB、OC,OD,∵∠ACB=90°,AC=30cm,BC=40cm,∴AB==50cm,设半径OD=rcm,∴S△ACB==,∴30×40=30r+40r+50r,∴r=1,则该圆半径是1cm.故答案为:1.【点睛】本题考查内切圆、勾股定理和等面积法的问题,属中档题.14、②③④.【分析】①错误.根据x1<x2<0时,函数y随x的增大而减小可得;②正确.求出A、B两点坐标即可解决问题;③正确.设P(0,m),则B(,m),A(﹣,m),求出PA、PB,推出PA=4PB,由SAOB=S△OPB+S△OPA即可求出S△AOB=7.5;④正确.设P(0,m),则B(,m),A(﹣,m),推出PB=﹣,PA=﹣,OP=﹣m,由△OPB∽△APO,可得OP2=PB•PA,列出方程即可解决问题.【详解】解:①错误.∵x1<x2<0,函数y随x是增大而减小,∴y1>y2,故①错误.②正确.∵P(0,﹣3),∴B(﹣1,﹣3),A(4,﹣3),∴AB=5,OA==5,∴AB=AO,∴△AOB是等腰三角形,故②正确.③正确.设P(0,m),则B(,m),A(﹣,m),∴PB=﹣,PA=﹣,∴PA=4PB,∵SAOB=S△OPB+S△OPA=+=7.5,故③正确.④正确.设P(0,m),则B(,m),A(﹣,m),∴PB=﹣,PA=﹣,OP=﹣m,∵∠AOB=90°,∠OPB=∠OPA=90°,∴∠BOP+∠AOP=90°,∠AOP+∠OAP=90°,∴∠BOP=∠OAP,∴△OPB∽△APO,∴=,∴OP2=PB•PA,∴m2=﹣•(﹣),∴m4=36,∵m<0,∴m=﹣,∴A(2,﹣),故④正确.∴②③④正确,故答案为②③④.【点睛】本题考查反比例函数综合题、等腰三角形的判定、两点间距离公式、相似三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数,构建方程解决问题.15、1【分析】设两个正六边形的中心为O,连接OP,OB,过点O作OG⊥PM于点G,OH⊥AB于点H,如图所示:很容易证出三角形PMN是一个等边三角形,边长PM的长,,而且面积等于小正六边形的面积的,故三角形PMN的面积很容易被求出,根据正六边形的性质及等腰三角形的三线和一可以得出PG的长,进而得出OG的长,,在Rt△OPG中,根据勾股定理得OP的长,设OB为x,,根据正六边形的性质及等腰三角形的三线和一可以得出BH,OH的长,进而得出PH的长,在Rt△PHO中,根据勾股定理得关于x的方程,求解得出x的值,从而得出答案.【详解】解:设两个正六边形的中心为O,连接OP,OB,过点O作OG⊥PM于点G,OH⊥AB于点H,如图所示:很容易证出三角形PMN是一个等边三角形,边长PM=,而且面积等于小正六边形的面积的,故三角形PMN的面积为cm2,∵OG⊥PM,且O是正六边形的中心,∴PG=PM=∴OG=在Rt△OPG中,根据勾股定理得:OP2=OG2+PG2,即=OP2∴OP=7cm,设OB为x,∵OH⊥AB,且O是正六边形的中心,∴BH=X,OH=,∴PH=5-x,在Rt△PHO中,根据勾股定理得OP2=PH2+OH2,即解得:x1=1,x2=-3(舍)故该圆的半径为1cm.故答案为1.【点睛】本题以相机快门为背景,从中抽象出数学模型,综合考查了多边形、圆、三角形及解三角形等相关知识,突出考查数学的应用意识和解决问题的能力.试题通过将快门的光圈变化这个动态的实际问题化为静态的数学问题,让每个学生都能参与到实际问题数学化的过程中,鼓励学生用数学的眼光观察世界;在运用数学知识解决问题的过程中,关注思想方法,侧重对问题的分析,将复杂的图形转化为三角形或四边形解决,引导学生用数学的语言表达世界,用数学的思维解决问题.16、.【详解】解:根据圆周角定理可得∠AED=∠ABC,所以tan∠AED=tan∠ABC=.故答案为:.【点睛】本题考查圆周角定理;锐角三角函数.17、.【分析】根据概率的性质和概率公式即可求出,当他掷第10次时,正面向上的概率.【详解】解:∵掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,∴她第10次掷这枚硬币时,正面向上的概率是:.故答案为:.【点睛】本题考查了概率统计的问题,根据概率公式求解即可.18、【分析】根据题意,作出合适的辅助线,由图可知,阴影部分的面积=△CBF的面积,根据题目的条件和图形,可以求得△BCF的面积,从而可以解答本题.【详解】连接OD、OF、BF,作DE⊥OA于点E,∵ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上,AD=OA=2,∴OA=OD=AD=OF=OB=2,DC∥AB,∴△DOA是等边三角形,∠AOD=∠FDO,∴∠AOD=∠FDO=60°,同理可得,∠FOB=60°,△BCD是等边三角形,∵弓形DF的面积=弓形FB的面积,DE=OD•sin60°=,∴图中阴影部分的面积为:=,故答案为:.【点睛】本题考查了求阴影部分面积的问题,掌握三角形面积公式是解题的关键.三、解答题(共66分)19、(1)60;(2)见解析;(3)108;(4).【分析】(1)用A的人类除以A所占的百分比即可求得答案;(2)求出c的人数,补全统计图即可;(3)用360度乘以B所占的比例即可得;(4)画树状图得到所有等可能的情况数,找出符合条件的情况数,利用概率公式求解即可.【详解】(1)本次随机调查的学生人数人,故答案为60;(2)(人),补全条形统计图如图1所示:(3)在扇形统计图中,“B”所在扇形的圆心角,故答案为108;(4)画树状图如图2所示:共有16个等可能的结果,小明和小华恰好选中同一个主题活动的结果有4个,小明和小华恰好选中同一个主题活动的概率.【点睛】本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.20、(1)y=-2x+200;(2)100件或20件;(3)销售单价定为65元时,该超市每天的利润最大,最大利润1750元【分析】(1)将点(40,120)、(60,80)代入一次函数表达式,即可求解;(2)由题意得(x-40)(-2x+200)=1000,解不等式即可得到结论;(3)由题意得w=(x-40)(-2x+200)=-2(x-70)2+1800,即可求解.【详解】(1)设y与销售单价x之间的函数关系式为:y=kx+b,
将点(40,120)、(60,80)代入一次函数表达式得:解得,所以关系式为y=-2x+200;(2)由题意得:(x-40)(-2x+200)=1000解得x1=50,x2=90;所以当x=50时,销量为:100件;当x=90时,销量为20件;(3)由题意可得利润W=(x-40)(-2x+200)=-2(x-70)2+1800,∵-2<0,故当x<70时,w随x的增大而增大,而x≤65,
∴当x=65时,w有最大值,此时,w=1750,
故销售单价定为65元时,该超市每天的利润最大,最大利润1750元.【点睛】考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.21、(1)证明见解析;(2)8﹣.【分析】(1)过O作OE⊥AB,根据垂径定理得到AE=BE,CE=DE,从而得到AC=BD;(2)由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,再根据勾股定理求出CE及AE的长,根据AC=AE﹣CE即可得出结论.【详解】解:(1)证明:如答图,过点O作OE⊥AB于点E,∵AE=BE,CE=DE,∴BE﹣DE=AE﹣CE,即AC=BD.(2)由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,∵OA=10,OC=8,OE=6,∴.∴AC=AE﹣CE=8﹣.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.22、两人之中至少有一人直行的概率为.【解析】画树状图展示所有9种等可能的结果数,找出“至少有一人直行”的结果数,然后根据概率公式求解.【详解】画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.概率=所求情况数与总情况数之比.23、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)4.【分析】(1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出,从而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面积等于△ABC的面积的,求出DH的长,从而利用S△DEF的值求出EF即可【详解】解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,证明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴.∵BD=CD,∴,即.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.∵AB=AC,D是BC的中点,∴AD⊥BC,BD=BC=1.在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,∴AD=2.∴S△ABC=•BC•AD=×3×2=42,S△DEF=S△ABC=×42=3.又∵•AD•BD=•AB•DH,∴.∵△BDF∽△DEF,∴∠DFB=∠EFD.∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF.又∵DF=DF,∴△DHF≌△DGF(AAS).∴DH=DG=.∵S△DEF=·EF·DG=·EF·=3,∴EF=4.【点睛】本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Module2MemyfamilyandfriendsUnit2FriemdsPeriod2(课件)牛津上海版(试用本)英语五年级上册
- 2024年度智能城市基础设施建设合同3篇
- 建筑劳务承包合同范本
- 2024年二手房交易双方权益保障协议2篇
- 2024年度软件许可合同的许可权限3篇
- 生产车间新员工入职培训
- 全体员工培训计划方案
- 2024年度环保项目投资与融资法律尽职调查合同3篇
- 《智慧商场方案》课件
- 《成分输血进展》课件
- 软件开发人员岗位工资体系
- 船舶垃圾管理计划范本.doc
- 小学生合唱社团记录(共13页)
- 在产品与完工产品成本的核算
- 幼儿园小班音乐《妈妈来抓兔兔》的优秀教案
- 业务学习简报(简笔画)
- 抽油杆和油管尺寸查用表1页
- 宁波地区冬闲田利用现状及对策
- 自动升降柱施工方案(1)
- 新视野大学英语第三版读写教程第二册Unit5
- JG/T 10099 塔式起重机操作使用规程
评论
0/150
提交评论