




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图是一个几何体的三视图,则这个几何体的体积为()A. B. C. D.2.对于函数,若满足,则称为函数的一对“线性对称点”.若实数与和与为函数的两对“线性对称点”,则的最大值为()A. B. C. D.3.双曲线:(,)的一个焦点为(),且双曲线的两条渐近线与圆:均相切,则双曲线的渐近线方程为()A. B. C. D.4.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为()A. B. C. D.5.给出下列四个命题:①若“且”为假命题,则﹑均为假命题;②三角形的内角是第一象限角或第二象限角;③若命题,,则命题,;④设集合,,则“”是“”的必要条件;其中正确命题的个数是()A. B. C. D.6.如图,在三棱锥中,平面,,,,,分别是棱,,的中点,则异面直线与所成角的余弦值为A.0 B. C. D.17.己知抛物线的焦点为,准线为,点分别在抛物线上,且,直线交于点,,垂足为,若的面积为,则到的距离为()A. B. C.8 D.68.已知复数满足:,则的共轭复数为()A. B. C. D.9.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是().A.与2016年相比,2019年不上线的人数有所增加B.与2016年相比,2019年一本达线人数减少C.与2016年相比,2019年二本达线人数增加了0.3倍D.2016年与2019年艺体达线人数相同10.给出个数,,,,,,其规律是:第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,以此类推,要计算这个数的和.现已给出了该问题算法的程序框图如图,请在图中判断框中的①处和执行框中的②处填上合适的语句,使之能完成该题算法功能()A.; B.;C.; D.;11.若函数的图象经过点,则函数图象的一条对称轴的方程可以为()A. B. C. D.12.已知是虚数单位,则复数()A. B. C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数对于都有,且周期为2,当时,,则________________________.14.已知,,分别为内角,,的对边,,,,则的面积为__________.15.已知为椭圆上的一个动点,,,设直线和分别与直线交于,两点,若与的面积相等,则线段的长为______.16.的展开式中,的系数为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,四边形为正方形,平面,点是棱的中点,,.(1)若,证明:平面平面;(2)若三棱锥的体积为,求二面角的余弦值.18.(12分)已知三棱锥P-ABC(如图一)的平面展开图(如图二)中,四边形ABCD为边长等于的正方形,和均为正三角形,在三棱锥P-ABC中:(1)证明:平面平面ABC;(2)若点M在棱PA上运动,当直线BM与平面PAC所成的角最大时,求直线MA与平面MBC所成角的正弦值.19.(12分)已知数列满足,且.(1)求证:数列是等差数列,并求出数列的通项公式;(2)求数列的前项和.20.(12分)已知函数,.(1)当时,①求函数在点处的切线方程;②比较与的大小;(2)当时,若对时,,且有唯一零点,证明:.21.(12分)已知等差数列中,,数列的前项和.(1)求;(2)若,求的前项和.22.(10分)已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.再由球与圆柱体积公式求解.【详解】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.则几何体的体积为.故选:.【点睛】本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平.2、D【解析】
根据已知有,可得,只需求出的最小值,根据,利用基本不等式,得到的最小值,即可得出结论.【详解】依题意知,与为函数的“线性对称点”,所以,故(当且仅当时取等号).又与为函数的“线性对称点,所以,所以,从而的最大值为.故选:D.【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出的表达式是解题的关键,属于中档题.3、A【解析】
根据题意得到,化简得到,得到答案.【详解】根据题意知:焦点到渐近线的距离为,故,故渐近线为.故选:.【点睛】本题考查了直线和圆的位置关系,双曲线的渐近线,意在考查学生的计算能力和转化能力.4、D【解析】
设圆柱的底面半径为,则其母线长为,由圆柱的表面积求出,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为,则其母线长为,因为圆柱的表面积公式为,所以,解得,因为圆柱的体积公式为,所以,由题知,圆柱内切球的体积是圆柱体积的,所以所求圆柱内切球的体积为.故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.5、B【解析】
①利用真假表来判断,②考虑内角为,③利用特称命题的否定是全称命题判断,④利用集合间的包含关系判断.【详解】若“且”为假命题,则﹑中至少有一个是假命题,故①错误;当内角为时,不是象限角,故②错误;由特称命题的否定是全称命题知③正确;因为,所以,所以“”是“”的必要条件,故④正确.故选:B.【点睛】本题考查命题真假的问题,涉及到“且”命题、特称命题的否定、象限角、必要条件等知识,是一道基础题.6、B【解析】
根据题意可得平面,,则即异面直线与所成的角,连接CG,在中,,易得,所以,所以,故选B.7、D【解析】
作,垂足为,过点N作,垂足为G,设,则,结合图形可得,,从而可求出,进而可求得,,由的面积即可求出,再结合为线段的中点,即可求出到的距离.【详解】如图所示,作,垂足为,设,由,得,则,.过点N作,垂足为G,则,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因为,所以为线段的中点,所以F到l的距离为.故选:D【点睛】本题主要考查抛物线的几何性质及平面几何的有关知识,属于中档题.8、B【解析】
转化,为,利用复数的除法化简,即得解【详解】复数满足:所以故选:B【点睛】本题考查了复数的除法和复数的基本概念,考查了学生概念理解,数学运算的能力,属于基础题.9、A【解析】
设2016年高考总人数为x,则2019年高考人数为,通过简单的计算逐一验证选项A、B、C、D.【详解】设2016年高考总人数为x,则2019年高考人数为,2016年高考不上线人数为,2019年不上线人数为,故A正确;2016年高考一本人数,2019年高考一本人数,故B错误;2019年二本达线人数,2016年二本达线人数,增加了倍,故C错误;2016年艺体达线人数,2019年艺体达线人数,故D错误.故选:A.【点睛】本题考查柱状图的应用,考查学生识图的能力,是一道较为简单的统计类的题目.10、A【解析】
要计算这个数的和,这就需要循环50次,这样可以确定判断语句①,根据累加最的变化规律可以确定语句②.【详解】因为计算这个数的和,循环变量的初值为1,所以步长应该为1,故判断语句①应为,第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,这样可以确定语句②为,故本题选A.【点睛】本题考查了补充循环结构,正确读懂题意是解本题的关键.11、B【解析】
由点求得的值,化简解析式,根据三角函数对称轴的求法,求得的对称轴,由此确定正确选项.【详解】由题可知.所以令,得令,得故选:B【点睛】本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.12、A【解析】
根据复数的基本运算求解即可.【详解】.故选:A【点睛】本题主要考查了复数的基本运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用,且周期为2,可得,得.【详解】∵,且周期为2,∴,又当时,,∴,故答案为:【点睛】本题考查函数的周期性与对称性的应用,考查转化能力,属于基础题.14、【解析】
根据题意,利用余弦定理求得,再运用三角形的面积公式即可求得结果.【详解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面积.故答案为:.【点睛】本题考查余弦定理的应用和三角形的面积公式,考查计算能力.15、【解析】
先设点坐标,由三角形面积相等得出两个三角形的边之间的比例关系,这个比例关系又可用线段上点的坐标表示出来,从而可求得点的横坐标,代入椭圆方程得纵坐标,然后可得.【详解】如图,设,,,由,得,由得,∴,解得,又在椭圆上,∴,,∴.故答案为:.【点睛】本题考查直线与椭圆相交问题,解题时由三角形面积相等得出线段长的比例关系,解题是由把线段长的比例关系用点的横坐标表示.16、16【解析】
要得到的系数,只要求出二项式中的系数减去的系数的2倍即可【详解】的系数为.故答案为:16【点睛】此题考查二项式的系数,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1)由已知可证得平面,则有,在中,由已知可得,即可证得平面,进而证得结论.(2)过作交于,由为的中点,结合已知有平面.则,可求得.建立坐标系分别求得面的法向量,平面的一个法向量为,利用公式即可求得结果.【详解】(1)证明:平面,平面,,又四边形为正方形,.又、平面,且,平面..中,,为的中点,.又、平面,,平面.平面,平面平面.(2)解:过作交于,如图为的中点,,.又平面,平面.,.所以,又、、两两互相垂直,以、、为坐标轴建立如图所示的空间直角坐标系.,,,设平面的法向量,则,即.令,则,..平面的一个法向量为.二面角的余弦值为.【点睛】本题考查面面垂直的证明方法,考查了空间线线、线面、面面位置关系,考查利用向量法求二面角的方法,难度一般.18、(1)见解析(2)【解析】
(1)设的中点为,连接.由展开图可知,,.为的中点,则有,根据勾股定理可证得,则平面,即可证得平面平面.(2)由线面成角的定义可知是直线与平面所成的角,且,最大即为最短时,即是的中点建立空间直角坐标系,求出与平面的法向量利用公式即可求得结果.【详解】(1)设AC的中点为O,连接BO,PO.由题意,得,,.在中,,O为AC的中点,,在中,,,,,.,平面,平面ABC,平面PAC,平面平面ABC.(2)由(1)知,,,平面PAC,是直线BM与平面PAC所成的角,且,当OM最短时,即M是PA的中点时,最大.由平面ABC,,,,于是以OC,OB,OD所在直线分别为x轴,y轴,z轴建立如图示空间直角坐标系,则,,设平面MBC的法向量为,直线MA与平面MBC所成角为,则由得:.令,得,,即.则.直线MA与平面MBC所成角的正弦值为.【点睛】本题考查面面垂直的证明,考查线面成角问题,借助空间向量是解决线面成角问题的关键,难度一般.19、(1)证明见解析,;(2).【解析】
(1)将等式变形为,进而可证明出是等差数列,确定数列的首项和公差,可求得的表达式,进而可得出数列的通项公式;(2)利用错位相减法可求得数列的前项和.【详解】(1)因为,所以,即,所以数列是等差数列,且公差,其首项所以,解得;(2),①,②①②,得,所以.【点睛】本题考查利用递推公式证明等差数列,同时也考查了错位相减法求和,考查推理能力与计算能力,属于中等题.20、(1)①见解析,②见解析;(2)见解析【解析】
(1)①把代入函数解析式,求出函数的导函数得到,再求出,利用直线方程的点斜式求函数在点处的切线方程;②令,利用导数研究函数的单调性,可得当时,;当时,;当时,.(2)由题意,,在上有唯一零点.利用导数可得当时,在上单调递减,当,时,在,上单调递增,得到.由在恒成立,且有唯一解,可得,得,即.令,则,再由在上恒成立,得在上单调递减,进一步得到在上单调递增,由此可得.【详解】解:(1)①当时,,,,又,切线方程为,即;②令,则,在上单调递减.又,当时,,即;当时,,即;当时,,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 防水修缮合同范本
- 借款融资居间服务合同范本
- 加梯安装合同范例
- 医生技术股协议合同范本
- 单位灯具购买合同范本
- 修车合同范本模板
- 农村建房买房合同范本
- 农村猪场合同范本
- 人事专员劳务合同范本
- 劳务供销合同范例
- 09式 新擒敌拳 教学教案 教学法 图解
- 《网店运营与管理》整本书电子教案全套教学教案
- 打印版 《固体物理教程》课后答案王矜奉
- CAD术语对照表
- 学术论文的写作与规范课件
- 香港牛津新魔法Newmagic3AUnit4Mycalendar单元检测试卷
- 中考《红星照耀中国》各篇章练习题及答案(1-12)
- Q∕GDW 11612.43-2018 低压电力线高速载波通信互联互通技术规范 第4-3部分:应用层通信协议
- 自动化物料编码规则
- 第1本书出体旅程journeys out of the body精教版2003版
- [英语考试]同等学力英语新大纲全部词汇
评论
0/150
提交评论