版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页码62页/总NUMPAGES总页数62页2022-2023学年江苏省南京市中考数学专项突破仿真模拟卷(3月)一、选一选(共8小题,每小题3分,满分24分)1.的值是()A.3 B. C. D.2.下列图案由正多边形拼成,其中既是轴对称图形又是对称图形的是()A.B.C.D.3.某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7 B.9.5×10﹣8 C.0.95×10﹣7 D.95×10﹣84.下列运算正确的是Ax2+x3="x5" B.x8¸x2="x4" C.3x-2x="1" D.(x2)3=x65.“a是实数,|a|≥0”这一是()A.必然 B.没有确定 C.没有可能 D.随机6.下列几何体中,同一个几何体的主视图与俯视图没有同的是()A.圆柱 B.正方体 C.圆锥 D.球7.如图,已知点A、B、C、D在⊙O上,圆心O在∠D内部,四边形ABCO为平行四边形,则∠DAO与∠DCO的度数和是()A.60° B.45° C.35° D.30°8.如图,在△ABC中,∠ACB=90º,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=;②当点E与点B重合时,MH=;③AF+BE=EF;④MG•MH=,其中正确结论为()A①②③ B.①③④ C.①②④ D.①②③④二、填空题(本大题共10小题,每小题3分,共30分)9.16的平方根是.10.某老师为了解学生周末学习时间的情况,在所任班级中随机了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()A.4 B.3 C.2 D.111.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为_____.12.已知一元二次方程x2﹣4x﹣m=0有两个实数根,m的取值范围是_____.13.如图,在△ABC中AC=3,中线AD=5,则边AB的取值范围是_____.14.函数y=中,自变量x的取值范围是____.15.如图,在矩形ABCD中,AB=5,BC=10,一圆弧过点B和点C,且与AD相切,则图中阴影部分面积为________.16.若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是_________°.17.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为_________.18.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互没有重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互没有重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互没有重叠的小三角形;……,△ABC的三个顶点和它内部的点P1、P2、P3……Pn,把△ABC分成______个互没有重叠的小三角形.三、解答题(本大题共有10小题,共86分)19.(1)计算:tan60°﹣(a2+1)0+||﹣;(2)计算:.20.(1)解方程:x2+3x=10;(2)解没有等式组.21.为了参加中考体育测试,甲,乙,丙三位同学进行足球传球训练.球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次.(1)求请用树状图列举出三次传球所有可能情况;(2)传球三次后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下概率大还是传到乙脚下的概率大?22.某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水没有超出基本用水量的部受基本价格,超出基本用水量的部分实行加价收费,为地决策,自来水公司随机抽取部分用户的用适量数据,并绘制了如下没有完整统计图(每组数据包括右端点但没有包括左端点),请你根据统计图解决下列问题:(1)此次抽取了多少用户的用水量数据?(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?23.如图,ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.24.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.25.如图,在一笔直的海岸线上有A,B两个观测站,A观测站在B观测站的正东方向,有一艘小船在点P处,从A处测得小船在北偏西60°方向,从B处测得小船在北偏东45°的方向,点P到点B的距离是3千米.(注:结果有根号的保留根号)(1)求A,B两观测站之间的距离;(2)小船从点P处沿射线AP的方向以千米/时的速度进行沿途考察,航行一段时间后到达点C处,此时,从B测得小船在北偏西15°方向,求小船沿途考察的时间.26.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当单价是25元时,每天的量为250件,单价每上涨1元,每天的量就减少10件(1)写出商场这种文具,每天所得的利润(元)与单价(元)之间的函数关系式;(2)求单价为多少元时,该文具每天的利润;(3)商场的营销部上述情况,提出了A、B两种营销A:该文具的单价高于进价且没有超过30元;B:每天量没有少于10件,且每件文具利润至少为25元请比较哪种的利润更高,并说明理由27.我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=时,a=,b=;如图2,当∠ABE=30°,c=4时,a=,b=;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图3证明你发现的关系式;拓展应用(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=,AB=3.求AF的长.28.如图,在平面直角坐标系中,抛物线与轴的交点为A,与x轴的交点分别为B(,0),C(,0),且,直线轴,在轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求APC面积的值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与AOB相似?若存在,求出此时t的值;若没有存在,请说明理由.2022-2023学年江苏省南京市中考数学专项突破仿真模拟卷(3月)一、选一选(共8小题,每小题3分,满分24分)1.的值是()A.3 B. C. D.【正确答案】C【分析】根据数轴上某个数与原点的距离叫做这个数的值,依据定义即可求解.【详解】在数轴上,点到原点的距离是,所以,的值是,故选:C.本题考查值,掌握值的定义是解题的关键.2.下列图案由正多边形拼成,其中既是轴对称图形又是对称图形的是()A.B.C.D.【正确答案】B【详解】根据轴对称图形与对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;对称图形是图形沿对称旋转180度后与原图重合.因此,A、是轴对称图形,没有是对称图形,没有符合题意;B、是轴对称图形,也是对称图形,符合题意;C、是轴对称图形,没有是对称图形,没有符合题意;D、是轴对称图形,没有是对称图形,没有符合题意.故选B.3.某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7 B.9.5×10﹣8 C.0.95×10﹣7 D.95×10﹣8【正确答案】A【分析】根据科学记数法的定义,即可得到答案.【详解】0.00000095=9.5×=9.5×10﹣7,故选A.本题主要考查科学记数法,掌握科学记数法的定义:a×10n(1≤|a|<10,n为整数),是解题的关键.4.下列运算正确的是A.x2+x3="x5" B.x8¸x2="x4" C.3x-2x="1" D.(x2)3=x6【正确答案】D【详解】试题分析:根据合并同类项,同底数幂的除法,幂的乘方运算法则逐一计算作出判断:A、x2与x3没有是同类项没有能合并,故选项错误;B、,故选项错误;C、,故选项错误;D、,故选项正确.故选D.5.“a是实数,|a|≥0”这一是()A.必然 B.没有确定 C.没有可能 D.随机【正确答案】A【详解】根据数轴上某个数与原点的距离叫做这个数的值的定义,由a是实数,得|a|≥0恒成立,因此,这一是必然.故选A.6.下列几何体中,同一个几何体的主视图与俯视图没有同的是()A.圆柱 B.正方体 C.圆锥 D.球【正确答案】C【详解】解:A、主视图是矩形,俯视图是矩形,主视图与俯视图相同,故本选项错误;B、主视图是正方形,俯视图是正方形,主视图与俯视图相同,故本选项错误;C、主视图是三角形,俯视图是圆及圆心,主视图与俯视图没有相同,故本选项正确;D、主视图是圆,俯视图是圆,主视图与俯视图相同,故本选项错误.故选:C本题考查三视图.7.如图,已知点A、B、C、D在⊙O上,圆心O在∠D内部,四边形ABCO为平行四边形,则∠DAO与∠DCO的度数和是()A.60° B.45° C.35° D.30°【正确答案】A【详解】试题解析:连接OD,∵四边形ABCO为平行四边形,∴∠B=∠AOC,∵点A.B.C.D在⊙O上,由圆周角定理得,解得∵OA=OD,OD=OC,∴∠DAO=∠ODA,∠ODC=∠DCO,故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.8.如图,在△ABC中,∠ACB=90º,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=;②当点E与点B重合时,MH=;③AF+BE=EF;④MG•MH=,其中正确结论为()A.①②③ B.①③④ C.①②④ D.①②③④【正确答案】C【详解】试题解析:①由题意知,△ABC是等腰直角三角形,∴AB=,故①正确;②如图1,当点E与点B重合时,点H与点B重合,∴MB⊥BC,∠MBC=90°,∵MG⊥AC,∴∠MGC=90°=∠C=∠MBC,∴MG∥BC,四边形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,∴CF=AF=BF,∴FG是△ACB的中位线,∴GC=AC=MH,故②正确;③如图2所示,∵AC=BC,∠ACB=90°,∴∠A=∠5=45°.将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2.在△ECF和△ECD中,,∴△ECF≌△ECD(SAS),∴EF=DE.∵∠5=45°,∴∠DBE=90°,∴DE2=BD2+BE2,即EF2=AF2+BE2,故③错误;④∵∠7=∠1+∠A=∠1+45°=∠1+∠2=∠ACE,∵∠A=∠5=45°,∴△ACE∽△BFC,∴,∴AE•BF=AC•BC=1,由题意知四边形CHMG是矩形,∴MG∥BC,MH=CG,MG=CH,MH∥AC,∴;,即;,∴MG=AE;MH=BF,∴MG•MH=AE×BF=AE•BF=AC•BC=.故④正确.故选C.考查了相似形综合题,涉及的知识点有:等腰直角三角形的判定和性质,平行线的判定和性质,矩形的判定和性质,三角形中位线的性质,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质,综合性较强,有一定的难度.二、填空题(本大题共10小题,每小题3分,共30分)9.16的平方根是.【正确答案】±4【详解】由(±4)2=16,可得16的平方根是±4,故±4.10.某老师为了解学生周末学习时间的情况,在所任班级中随机了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()A.4 B.3 C.2 D.1【正确答案】B【详解】根据题意得:(1×1+2×2+4×3+2×4+1×5)÷10=3(小时),答:这10名学生周末学习的平均时间是3小时;故选B.11.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为_____.【正确答案】6【分析】设反比例函数解析式为y=,根据反比例函数图象上点的坐标特征得到k=3×(﹣4)=﹣2m,然后解关于m的方程即可.【详解】解:设反比例函数解析式为y=,根据题意得k=3×(﹣4)=﹣2m,解得m=6.故答案为6.考点:反比例函数图象上点的坐标特征.12.已知一元二次方程x2﹣4x﹣m=0有两个实数根,m的取值范围是_____.【正确答案】m≥﹣4【详解】试题解析:∵一元二次方程有两个实数根,解得:故答案为13.如图,在△ABC中AC=3,中线AD=5,则边AB的取值范围是_____.【正确答案】7<AB<13【详解】试题解析:如图,延长AD到E,使得DE=AD=5,连接EC.∵AD=DE,∠ADB=∠EDC,BD=DC,∴△ADB≌△EDC,∴EC=AB,∴即故答案为点睛:三角形的任意两边之和大于第三边.14.函数y=中,自变量x的取值范围是____.【正确答案】x>2【详解】解:根据题意得,x﹣2≥0且x﹣2≠0,解得x>2.故答案为x>2.本题考查函数自变量的取值范围.15.如图,在矩形ABCD中,AB=5,BC=10,一圆弧过点B和点C,且与AD相切,则图中阴影部分面积为________.【正确答案】75﹣【详解】设圆弧的圆心为O,与AD切于E,
连接OE交BC于F,连接OB、OC,
设圆的半径为x,则OF=x-5,
由勾股定理得,OB2=OF2+BF2,
即x2=(x-5)2+(5)2解得,x=10,
则∠BOF=60°,∠BOC=120°,
则阴影部分面积为:矩形ABCD的面积-(扇形BOCE的面积-△BOC的面积)故答案是.16.若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是_________°.【正确答案】120.【详解】试题分析:圆锥侧面展开图的弧长是:2π×2=4π(cm),设圆心角的度数是n度.则=4π,解得:n=120.故答案为120.考点:圆锥的计算.17.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为_________.【正确答案】【详解】试题分析:过点C作CD和CE垂直正方形的两个边长,如图,∵一个正方形和一个等边三角形的摆放,∴四边形DBEC是矩形,∴CE=DB=,∴△ABC的面积=AB•CE=×1×=.考点:1.正方形的性质;2.等边三角形的性质;3.含30度角的直角三角形.18.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互没有重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互没有重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互没有重叠的小三角形;……,△ABC的三个顶点和它内部的点P1、P2、P3……Pn,把△ABC分成______个互没有重叠的小三角形.【正确答案】3+2(n﹣1)【详解】试题分析:由题及图象可知,当三角形内部有一个点时有3个三角形,以后三角形内部每增加一个点,就会多两个三角形,所以当内部有n个点时共有3+2(n-1)=2n+1个互补重叠的三角形考点:规律题三、解答题(本大题共有10小题,共86分)19.(1)计算:tan60°﹣(a2+1)0+||﹣;(2)计算:.【正确答案】(1)4,(2)2a.【详解】试题分析:(1)原式项利用角的三角函数值计算,第二项利用零指数幂法则计算,第三项利用值的代数意义化简,一项利用立方根法则计算即可得到结果;
(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.试题解析:(1)原式(2)原式20.(1)解方程:x2+3x=10;(2)解没有等式组.【正确答案】﹣1≤x<3【详解】试题分析:因式分解法解方程即可.根据没有等式的性质求出每个没有等式的解集,然后找出它们的公共部分即可.试题解析:(1)原方程可化为:∵由①得由(2)得∴没有等式组的解集为:21.为了参加中考体育测试,甲,乙,丙三位同学进行足球传球训练.球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次.(1)求请用树状图列举出三次传球的所有可能情况;(2)传球三次后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?【正确答案】(1)见解析;(2);(3)乙脚下的概率大.【分析】(1)根据题意画出树状图,得出所有的可能情况;(2)根据树状图得出传到甲脚下的概率;(3)根据树状图得出传到乙脚下的概率,然后进行比较大小,得出答案.【详解】(1)三次传球所有可能的情况如图:(2)由图知:三次传球后,球回到甲的概率为P(甲)=(3)由图知:三次传球后,球回到乙的概率为P(乙)=∵P(乙)>P(甲)∴是传到乙脚下的概率大.考点:概率的计算22.某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水没有超出基本用水量的部受基本价格,超出基本用水量的部分实行加价收费,为地决策,自来水公司随机抽取部分用户的用适量数据,并绘制了如下没有完整统计图(每组数据包括右端点但没有包括左端点),请你根据统计图解决下列问题:(1)此次抽取了多少用户的用水量数据?(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?【正确答案】(1)100户(2)直方图见解析,90°(3)13.2万户【分析】(1)根据频数、频率和总量的关系,由用水“0吨~10吨”部分的用户数和所占百分比即可求得此次抽取的用户数.(2)求出用水“15吨~20吨”部分的户数,即可补全频数分布直方图.由用水“20吨~300吨”部分的户所占百分比乘以360°即可求得扇形统计图中“25吨~30吨”部分的圆心角度数.(3)根据用样本估计总体的思想即可求得该地20万用户中用水全部享受基本价格的用户数.【详解】解:(1)∵10÷10%=100(户),∴此次抽取了100户用户的用水量数据.(2)∵用水“15吨~20吨”部分的户数为100﹣10﹣36﹣25﹣9=100﹣80=20(户),∴据此补全频数分布直方图如图:扇形统计图中“25吨~30吨”部分的圆心角度数为×360°=90°.(3)∵×20=13.2(万户).∴该地20万用户中约有13.2万户居民的用水全部享受基本价格.23.如图,ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.【正确答案】(2)证明见解析;(2)四边形EBFD是矩形.证明见解析.【分析】(1)根据SAS即可证明;(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【详解】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,,∴△DOE≌△BOF.(2)结论:四边形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四边形EBFD平行四边形,∵BD=EF,∴四边形EBFD是矩形.本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练相关的基本知识.24.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.【正确答案】(1)2400个,10天;(2)480人.【分析】(1)设原计划每天生产零件x个,根据相等关系“原计划生产24000个零件所用时间=实际生产(24000+300)个零件所用的时间”可列方程,解出x即为原计划每天生产的零件个数,再代入即可求得规定天数;(2)设原计划安排的工人人数为y人,根据“(5组机器人生产流水线每天生产的零件个数+原计划每天生产的零件个数)×(规定天数-2)=零件总数24000个”可列方程[5×20×(1+20%)×+2400]×(10-2)=24000,解得y的值即为原计划安排的工人人数.【详解】解:(1)解:设原计划每天生产零件x个,由题意得,,解得x=2400,经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产零件2400个,规定的天数是10天;(2)设原计划安排的工人人数为y人,由题意得,[5×20×(1+20%)×+2400]×(10-2)=24000,解得,y=480.经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数为480人.本题考查分式方程的应用,找准等量关系是本题的解题关键,注意分式方程结果要检验.25.如图,在一笔直的海岸线上有A,B两个观测站,A观测站在B观测站的正东方向,有一艘小船在点P处,从A处测得小船在北偏西60°方向,从B处测得小船在北偏东45°的方向,点P到点B的距离是3千米.(注:结果有根号的保留根号)(1)求A,B两观测站之间的距离;(2)小船从点P处沿射线AP的方向以千米/时的速度进行沿途考察,航行一段时间后到达点C处,此时,从B测得小船在北偏西15°方向,求小船沿途考察的时间.【正确答案】(1)(3+3)千米;(2)3小时.【详解】试题分析:(1)过点P作PD⊥AB于点D,先解Rt△PBD,得到BD和PD的长,再解Rt△PAD,得到AD和AP的长,然后根据BD+AD=AB,即可求解;(2)过点B作BF⊥AC于点F,先解Rt△ABF,得出BF和AF的长,再解Rt△BCF,得出CF的长,可求PC=AF+CF-AP,从而求解.试题解析:(1)如图,过点P作PD⊥AB于点D.在Rt△PBD中,∠BDP=90°,∠PBD=90°-45°=45°,∴BD=PD=km.在Rt△PAD中,∠ADP=90°,∠PAD=90°-60°=30°,∴AD=PD=km,PA=3.∴AB=BD+AD=(+)km;(2)如图,过点B作BF⊥AC于点F.根据题意得:∠ABC=105°,在Rt△ABF中,∠AFB=90°,∠BAF=30°,∴BF=AB=(+)km,AF=AB=(+)km.在△ABC中,∠C=180°-∠BAC-∠ABC=45°.在Rt△BCF中,∠BFC=90°,∠C=45°,∴CF=BF=(+)km,∴PC=AF+CF-AP=km.故小船沿途考察的时间为÷=小时.考点:解直角三角形的应用-方向角问题.26.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当单价是25元时,每天的量为250件,单价每上涨1元,每天的量就减少10件(1)写出商场这种文具,每天所得的利润(元)与单价(元)之间的函数关系式;(2)求单价为多少元时,该文具每天利润;(3)商场的营销部上述情况,提出了A、B两种营销A:该文具单价高于进价且没有超过30元;B:每天量没有少于10件,且每件文具的利润至少为25元请比较哪种的利润更高,并说明理由【正确答案】(1)w=-10x2+700x-10000;(2)即单价为35元时,该文具每天的利润;(3)A利润更高.【分析】试题分析:(1)根据利润=(单价-进价)×量,列出函数关系式即可.(2)根据(1)式列出的函数关系式,运用配方法求值.(3)分别求出A、B中x的取值范围,然后分别求出A、B的利润,然后进行比较.【详解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴当x=35时,w有值2250,即单价为35元时,该文具每天的利润.(3)A利润高,理由如下:A中:20<x≤30,函数w=-10(x-35)2+2250随x的增大而增大,∴当x=30时,w有值,此时,值为2000元.B中:,解得x的取值范围为:45≤x≤49.∵45≤x≤49时,函数w=-10(x-35)2+2250随x的增大而减小,∴当x=45时,w有值,此时,值为1250元.∵2000>1250,∴A利润更高27.我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=时,a=,b=;如图2,当∠ABE=30°,c=4时,a=,b=;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图3证明你发现的关系式;拓展应用(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=,AB=3.求AF的长.【正确答案】(1)2,2;2,2;(2)+=5;(3)AF=4.【详解】(1)【思路分析】由题可知AF、BE是的中线,因此EF即为的中位线,由此可得,且EF的长是AB的一半,题中已知的度数和边AB的长,利用相似三角形的性质和勾股定理即可得解;解:(1),;,.解法提示:由题可得EF即为的中位线,,且,,,①当时,,,,则在中,,,,即,;②当时,,,则在和中,,.(2)【思路分析】连接EF,由(1)中相似三角形可知PE与PB、PF与PA的比例关系,设,由此可得AP、PB的长,依次将线段长代入和中,即可求解;解:猜想三者之间的关系是:.证明如下:如解图①,连接EF,∵AF,BE是的中线,∴EF是的中位线.,且.,.图①方法一:设,则,在中,①;在中,②;在中,③;由①,得.由②+③,得..方法二:在和中,,..,即.(3)【思路分析】求AF的长,则首先想到构造“中垂三角形”,由题可知,,设AF、BE交于点P,取AB的中点H,连接FH、AC,平行四边形的性质可证得为“中垂三角形”,利用“中垂三角形”的三边关系即可求解.解:设AF,BE交于点P.图②如解图②,取AB的中点H,连接FH,AC.∵E,G分别是AD,CD的中点,F是BC的中点,.又,.∵四边形ABCD是平行四边形,,,是“中垂三角形”,,即,.图③一题多解:如解图③,连接AC,CE,延长CE交BA的延长线于点H.∵在中,E,G分别是AD、CD的中点,.,.又中,,..∴BE,CA是的中线,是“中垂三角形”,.,,即.∵AF是的中位线,.难点突破:本题的难点在于第(2)问中求得PE与PB、PF与PA的比例关系后,利用勾股定理将其转换为三者之间的关系;第(3)问中在平行四边形中利用平行四边形的性质构造“中垂三角形”,利用“中垂三角形”的三边关系进行求解.28.如图,在平面直角坐标系中,抛物线与轴的交点为A,与x轴的交点分别为B(,0),C(,0),且,直线轴,在轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求APC面积的值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与AOB相似?若存在,求出此时t的值;若没有存在,请说明理由.【正确答案】(1);(2)12;(3)t=或t=或t=14.【分析】(1)首先利用根与系数的关系得出:,条件求出的值,然后把点B,C的坐标代入解析式计算即可;(2)分0<t<6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的值;(3)分2<t≤6时和t>6时两种情况进行讨论,再根据三角形相似的条件,即可得解.【详解】解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0两根,∴x1+x2=8,由解得:∴B(2,0)、C(6,0)则4m﹣16m+4m+2=0,解得:m=∴该抛物线解析式为:y=;.(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,∵∴∴直线AC的解析式为:y=﹣x+3,要构成APC,显然t≠6,分两种情况讨论:当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此时值为:,②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣),∵P(t,),∴PM=,∴S△APC=S△APF﹣S△CPF===,当t=8时,取值,值为:12,综上可知,当0<t≤8时,APC面积的值为12;(3)如图,连接AB,则AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①当2<t≤6时,AQ=t,PQ=,若:,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=2(舍),②当t>6时,=t,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=14,∴t=或t=或t=14本题是二次函数综合题目,主要考查了待定系数法求二次函数解析式、三角形的面积公式、相似三角形的性质,利用分类讨论的思想和方程思想求解是解决本题的关键.2022-2023学年江苏省南京市中考数学专项突破仿真模拟卷(4月)一、选一选1.﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣2.下列图形中,既是轴对称图形又是对称图形的是A.B.C.D.3.下列运算正确是(
)A. B. C. D.4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为(
)A. B. C.
D.5.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是(
)A.B.C.D.6.一组数据2,4,6,4,8的中位数为(
)A.2 B.4 C.6 D.87.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为(
)A.35° B.45° C.55° D.65°8.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A.−2 B.2 C.−4 D.4二、填空题9.根据如图所示的车票信息,车票的价格为________元.10.如果分式有意义,那么实数x的取值范围是______.11.分解因式:x2-2x+1=__________.12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.13.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=________.14.如图,点D为矩形OABCAB边的中点,反比例函数的图象点D,交BC边于点E.若△BDE的面积为1,则k=________15.如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为_____cm(结果保留π).16.如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=________.三、解答题17.计算:18.解没有等式:3x-1≥2(x-1),并把它的解集在数轴上表示出来.19.先化简,再求值:,其中.20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅没有同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.在正方形ABCD中,对角线BD所在直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.22.“教育平台”是中国教育学会为方便学长和学生参与知识、接受提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;
D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.一商店某种商品,平均每天可售出20件,每件盈利40元.为了扩大、增加盈利,该店采取了降价措施,在每件盈利没有少于25元的前提下,一段时间,发现单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天数量为________件;(2)当每件商品降价多少元时,该商店每天利润为1200元?24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.
(1)根据图象信息,当t=________分钟时甲乙两人相遇,甲的速度为________米/分钟;(2)求出线段AB所表示的函数表达式.25.如图,在以线段AB为直径⊙O上取一点,连接AC、BC,将△ABC沿AB翻折后得到△ABD
(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC·AE,求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.26.(1)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D没有与点B、C重合),使两边分别交线段AB、AC于点E、F.
①若AB=6,AE=4,BD=2,则CF=________;②求证:△EBD∽△DCF.(2)【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示.问点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若没有存在,请说明理由.(3)【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均没有与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为________(用含α的表达式表示)
.27.如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3点A(-1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.①若点P的横坐标为,求△DPQ面积的值,并求此时点D的坐标;②直尺在平移过程中,△DPQ面积是否有值?若有,求出面积的值;若没有,请说明理由.2022-2023学年江苏省南京市中考数学专项突破仿真模拟卷(4月)一、选一选1.﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣【正确答案】B【详解】分析:只有符号没有同的两个数叫做互为相反数.详解:-2018的相反数是2018.故选B.点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.下列图形中,既是轴对称图形又是对称图形的是A.B.C.D.【正确答案】D【分析】根据轴对称图形和对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.是轴对称图形,但没有是对称图形,故没有符合题意;B.没有是轴对称图形,是对称图形,故没有符合题意;C.是轴对称图形,但没有是对称图形,故没有符合题意;D.既是轴对称图形又是对称图形,故符合题意.故选D.本题考查了轴对称图形和对称图形的识别,熟练掌握轴对称图形和对称图形的定义是解答本题的关键.3.下列运算正确的是(
)A. B. C. D.【正确答案】C【分析】根据合并同类项法则、同底数幂的乘除法则进行计算即可.【详解】解:A、,故A没有符合题意;B、,故B没有符合题意;C.,故C符合题意;D.,故D没有符合题意;故选:C本题考查合并同类项、同底数幂的乘除法以及幂的乘方运算,解答本题的关键是熟悉并灵活运用各法则进行计算.4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为(
)A. B. C.
D.【正确答案】A【详解】分析:科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的值与小数点移动的位数相同.当原数值>1时,n是正数;当原数的值<1时,n是负数.详解:将146000用科学记数法表示为:1.46×105.
故选A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是(
)A. B. C. D.【正确答案】B【详解】分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.详解:从左面看易得层有2个正方形,第二层有1个正方形,如图所示:.
故选B.点睛:本题考查了三视图的知识,左视图是从物体的左面看得到的图形.6.一组数据2,4,6,4,8的中位数为(
)A.2 B.4 C.6 D.8【正确答案】B【详解】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.详解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,
故这组数据的中位数是4.
故选B.点睛:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为(
)A.35° B.45° C.55° D.65°【正确答案】C【分析】由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论没有难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.【详解】解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故选C.本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识,解题关键是熟记圆周角定理.8.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A.−2 B.2 C.−4 D.4【正确答案】B【详解】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k的方程1-3+k=0,然后解方程即可.详解:把x=1代入方程得1+k-3=0,
解得k=2.
故选B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.二、填空题9.根据如图所示的车票信息,车票的价格为________元.【正确答案】77.5【详解】分析:根据图片得出价格即可.详解:根据如图所示的车票信息,车票的价格为77.5元,
故答案为77.5.点睛:本题考查了数字表示,能正确读出信息是解此题的关键,培养了学生的观察图形的能力.10.如果分式有意义,那么实数x的取值范围是______.【正确答案】x≠2【详解】分析:根据分式有意义,分母没有等于0列式计算即可得解.详解:由题意得,x−2≠0,解得x≠2.故答案为x≠2.点睛:此题考查了分式有意义的条件:分式有意义的条件是分母没有等于0,分式无意义的条件是分母等于0.11.分解因式:x2-2x+1=__________.【正确答案】(x-1)2【详解】由完全平方公式可得:故答案为.错因分析容易题.失分原因是:①因式分解的方法掌握没有熟练;②因式分解没有彻底.12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.【正确答案】【详解】分析:首先确定阴影的面积在整个面积中占的比例,根据这个比例即可求出蚂蚁停在阴影部分的概率.详解:∵正方形被等分成9份,其中阴影方格占4份,
∴当蚂蚁停下时,停在地板中阴影部分的概率为,
故答案为.点睛:此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.13.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=________.【正确答案】85°【详解】分析:直接利用三角形外角的性质平行线的性质得出答案.详解:如图,∵∠1=40°,∠4=45°,
∴∠3=∠1+∠4=85°,
∵矩形对边平行,
∴∠2=∠3=85°.
故答案为85°.点睛:此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.14.如图,点D为矩形OABC的AB边的中点,反比例函数的图象点D,交BC边于点E.若△BDE的面积为1,则k=________【正确答案】4【详解】分析:设D(a,),利用点D为矩形OABC的AB边的中点得到B(2a,),则E(2a,),然后利用三角形面积公式得到•a•(-)=1,解方程即可.详解:设D(a,),
∵点D为矩形OABC的AB边的中点,
∴B(2a,),
∴E(2a,),
∵△BDE的面积为1,
∴•a•(-)=1,解得k=4.
故答案为4.点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而三角形的面积公式列出方程求解,可确定参数k的取值.15.如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为_____cm(结果保留π).【正确答案】【详解】分析:先根据图1确定:图2的周长=2个的长,根据弧长公式可得结论.详解:由图1得:的长+的长=的长,
∵半径OA=2cm,∠AOB=120°
则图2的周长为.故答案为.点睛:本题考查了弧长公式的计算,根据图形特点确定各弧之间的关系是本题的关键.16.如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=________.【正确答案】或【分析】分两种情形分别求解:①如图1中,当AQ=PQ,∠QPB=90°时,②当AQ=PQ,∠PQB=90°时;由相似三角形性质列比例式求解即可.【详解】解:∵∠C=90°,AC=6,BC=8,∴,①如图1中,当AQ=PQ,∠QPB=90°时,设AQ=PQ=x,
∵PQ∥AC,
∴△BPQ∽△BCA,
∴,
∴,
∴x=,
∴AQ=.
②当AQ=PQ,∠PQB=90°时,如图2,设AQ=PQ=y.
∵∠PQB=∠C=90°,∠B=∠B,∴△BQP∽△BCA,
∴,
∴,
∴y=.
综上所述,满足条件的AQ的值为或.本题考查勾股定理、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.三、解答题17.计算:【正确答案】0【详解】分析:先分别计算0次幂、负整数指数幂和立方根,然后再进行加减运算即可.详解:原式=1-2+2=0点睛:任何非零数的0次幂结果为1;负整数次幂法则:(a≠0,p为正整数).18.解没有等式:3x-1≥2(x-1),并把它的解集在数轴上表示出来.【正确答案】x≥-1,在数轴上表示见解析.【详解】分析:没有等式去括号,移项合并,将x系数化为1,求出解集,表示在数轴上即可.详解:3x-1≥2(x-1),
3x-1≥2x-2,
3x-2x≥-2+1,
x≥-1;
将没有等式的解集表示在数轴上如下:
点睛:此题考查了解一元没有等式,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解集.19.先化简,再求值:,其中.【正确答案】原式=x-1=【详解】分析:先把括号内通分和除法运算化为乘法运算,再约分得到原式=x-1,然后再把x的值代入x-1计算即可.详解:原式===x-1;当x=时,原式=-1=.点睛:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅没有同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.【正确答案】(1)树状图见解析;(2)【详解】分析:(1)根据题意可以用树状图表示出所有的可能结果;
(2)根据(1)中的树状图可以得到小悦拿到的两个粽子都是肉馅的概率.详解:(1)肉粽记为A、红枣粽子记为B、豆沙粽子记为C,由题意可得,
(2)由(1)可得,
小悦拿到的两个粽子都是肉馅的概率是:,
即小悦拿到的两个粽子都是肉馅的概率是.点睛:本题考查列表法与树状图法,解答本题的关键是明确题意,列出相应的树状图,求出相应的概率.21.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.【正确答案】(1)证明见解析(2)菱形【详解】分析:(1)根据正方形的性质和全等三角形的判定证明即可;
(2)四边形AECF是菱形,根据对角线垂直的平行四边形是菱形即可判断;详证明:(1)∵四边形ABCD是正方形,
∴AB=AD,
∴∠ABD=∠ADB,
∴∠ABE=∠ADF,
在△ABE与△ADF中
,
∴△ABE≌△ADF(SAS)
(2)如图,连接AC,
四边形AECF是菱形.
理由:在正方形ABCD中,
OA=OC,OB=OD,AC⊥EF,
∴OB+BE=OD+DF,
即OE=OF,
∵OA=OC,OE=OF,
∴四边形AECF是平行四边形,
∵AC⊥EF,
∴四边形AECF是菱形.点睛:本题考查正方形的性质、全等三角形的判定和性质、菱形的判定等知识,解题的关键是熟练掌握基本知识.22.“教育平台”是中国教育学会为方便学长和学生参与知识、接受提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;
D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样结果,估计该校2000名学生中“家长和学生都未参与”的人数.【正确答案】(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【分析】(1)根据A类别人数及其所占百分比可得总人数;
(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C类别人数占被人数的比例可得;
(3)用总人数乘以样本中D类别人数所占比例可得.【详解】解:(1)本次的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,
补全条形图如下:
C类所对应扇形的圆心角的度数为360°×=54°;
(3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×=100人.本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.23.一商店某种商品,平均每天可售出20件,每件盈利40元.为了扩大、增加盈利,该店采取了降价措施,在每件盈利没有少于25元的前提下,一段时间,发现单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天数量为________件;(2)当每件商品降价多少元时,该商店每天利润为1200元?【正确答案】(1)26;(2)每件商品降价10元时,该商店每天利润为1200元.【分析】(1)根据单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出2×3=6件,即平均每天数量为20+6=26件;(2)利用商品平均每天售出的件数×每件盈利=每天这种商品利润列出方程解答即可.【详解】(1)若降价3元,则平均每天数量20+2×3=26件.(2)设每件商品应降价x元时,该商店每天利润为1200元.根据题意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,解得:x1=10,x2=20.∵要求每件盈利没有少于25元,∴x2=20应舍去,∴x=10.答:每件商品应降价10元时,该商店每天利润为1200元.此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天的利润是解题关键.24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.
(1)根据图象信息,当t=________分钟时甲乙两人相遇,甲的速度为________米/分钟;(2)求出线段AB所表示的函数表达式.【正确答案】(1)24;40;(2)线段AB的表达式为:y=40t(40≤t≤60)【详解】解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40米/分钟.
故答案是:24,40;(2)∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t=24分钟时甲乙两人相遇,
∴甲、乙两人的速度和为2400÷24=100米/分钟,
∴乙的速度为100-40=60米/分钟.
乙从图书馆回学校的时间为2400÷60=40分钟,
40×40=1600,
∴A点的坐标为(40,1600),
设线段AB所表示的函数表达式为y=kt+b,
∵A(40,1600),B(60,2400),
∴,解得,
∴线段AB所表示的函数表达式为y=40t(40≤t≤60).25.如图,在以线段AB为直径的⊙O上取一点,连接AC、BC,将△ABC沿AB翻折后得到△ABD
(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC·AE,求证:BE为⊙O的切线;(3)在(2)条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.【正确答案】(1)证明见解析;(2)证明见解析;(3)EF=【详解】分析:(1)由翻折知△ABC≌△ABD,得∠ADB=∠C=90°,据此即可得;(2)由AB=AD知AB2=AD•AE,即,据此可得△ABD∽△AEB,即可得出∠ABE=∠ADB=90°,从而得证;(3)由知DE=1、BE=,证△FBE∽△FAB得,据此知FB=2FE,在Rt△ACF中根据AF2=AC2+CF2可得关于EF的一元二次方程,解之可得.详解:(1)∵AB为⊙O的直径,∴∠C=90°,∵将△ABC沿AB翻折后得到△ABD,∴△ABC≌△ABD,∴∠ADB=∠C=90°,∴点D在以AB为直径的⊙O上;(2)∵△ABC≌△ABD,∴AC=AD,∵AB2=AC•AE,∴AB2=AD•AE,即,∵∠BAD=∠EAB,∴△ABD∽△AEB,∴∠ABE=∠ADB=90°,∵AB为⊙O的直径,∴BE是⊙O的切线;(3)∵AD=AC=4、BD=BC=2,∠ADB=90°,∴AB=,∵,∴,解得:DE=1,∴BE=,∵四边形ACBD内接于⊙O,∴∠FBD=∠FAC,即∠FBE+∠DBE=∠BAE+∠BAC,又∵∠DBE+∠ABD=∠BAE+∠ABD=90°,∴∠DBE=∠BAE,∴∠FBE=∠BAC,又∠BAC=∠BAD,∴∠FBE=∠BAD,∴△FBE∽△FAB,∴,即,∴FB=2FE,在Rt△ACF中,∵AF2=AC2+CF2,∴(5+EF)2=42+(2+2EF)2,整理,得:3EF2-2EF-5=0,解得:EF=-1(舍)或EF=,∴EF=.点睛:本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、翻折的性质、圆内接四边形的性质及相似三角形的判定与性质、勾股定理等知识点.26.(1)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D没有与点B、C重合),使两边分别交线段AB、AC于点E、F.
①若AB=6,AE=4,BD=2,则CF=________;②求证:△EBD∽△DCF.(2)【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示.问点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若没有存在,请说明理由.(3)【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均没有与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为________(用含α的表达式表示)
.【正确答案】(1)①4;②证明见解析;(2)存在;(3)1-cosα.【详解】分析:(1)①
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年店铺租赁合同补充协议
- 《菲利普·格拉斯《二十首练习曲》的简约主义风格探析与演奏诠释》
- 《玄武岩纤维增强混凝土力学性能和耐久性能的研究》
- 《我国高收入群体个人所得税征管法律问题研究》
- 《税收优惠政策对医疗器械企业技术创新的激励效应研究》
- 《“天天中文”线上对日一对一中高级汉语口语教学研究》
- 2024年德阳从业资格证模拟考试题库
- 2024年唐山道路客运输从业资格证培训考试资料
- 2024年平凉客运从业资格证模拟考试
- 2024年淄博客运上岗证考试题库
- 模拟电子技术课程思政教学案例探究
- 中职班级精细化管理的实践探究
- 消防安全操作规程(20211127050648)
- 设备包机制度
- 大体积混凝土养护方案
- 1803综采工作面供电设计
- 胎心听诊技术PPT参考课件
- 卵巢畸胎瘤PPT优秀课件
- 《三只小猪》剧本
- 药厂生产过程中的危险有害因素分析及安全对策
- 从轨道电路的运用看区间信号的发展
评论
0/150
提交评论