版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省滨州市市滨城区清怡中学高三数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知cos2(α+)=,则sin2α=()A.﹣ B. C.﹣ D.参考答案:B【考点】二倍角的正弦.【分析】由已知利用降幂公式,诱导公式即可化简求值得解.【解答】解:∵cos2(α+)===,∴sin2α=.故选:B.2.已知关于x的二项式展开式的二项式系数之和为32,常数项为80,则a的值为()A.1 B.±1 C.2 D.±2参考答案:C【考点】二项式定理.【分析】根据题意,有2n=32,可得n=5,进而可得其展开式为Tr+1=C5r?()5﹣r?()r,分析可得其常数项为第4项,即C53?(a)3,依题意,可得C53?(a)3=80,解可得a的值.【解答】解:根据题意,该二项式的展开式的二项式系数之和为32,则有2n=32,可得n=5,则二项式的展开式为Tr+1=C5r?()5﹣r?()r,其常数项为第4项,即C53?(a)3,根据题意,有C53?(a)3=80,解可得,a=2;故选C.3.tan70°cos10°(1-tan20°)的值为(
)
A.-1
B.1
C.-2
D.2参考答案:【知识点】两角和与差的正切函数.C5
【答案解析】B
解析:tan70°cos10°(1﹣tan20°)=﹣tan70°cos10°(tan20°﹣1)=﹣cot20°cos10°(﹣1)=﹣2cot20°cos10°(sin20°﹣cos20°)=﹣2cos10°(sin20°cos30°﹣cos20°sin30°)=﹣=1故选:B.【思路点拨】先把切转化成弦,进而利用诱导公式,两角和公式和二倍角公式对原式进行化简整理,求得答案.4.若变量x,y满足约束条件,则的最大值为(
)A.4 B.2 C. D.参考答案:B【分析】画出约束条件所表示的平面区域,结合图象,得出当过点A时,直线的斜率最大,即可求解,得到答案.【详解】画出约束条件所表示的平面区域,如图所示,由目标函数,可化为表示平面区域的点与原点连线的斜率,结合图象可知,当过点A时,此时直线的斜率最大,又由,解得,所以目标函数的最大值为,故选B.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.5.若三棱锥的三视图如右图所示,则该三棱锥的体积为()A.80
B.40
C.
D.参考答案:D略6.已知点M(x,y)是圆的内部任意一点,则点M满足y≥x的概率是(
)A.
B.
C.
D.参考答案:D7.已知平面向量,,且,则=(
)A.–3
B.–1
C.1
D.3参考答案:C8.已知命题P:存在,使得是幂函数,且在(0,+∞)上单调递增;命题q:“”的否定是“”.则下列命题为真命题的是A. B. C.
D.参考答案:C当时,为幂函数,且在上单调递增,故是真命题,则是假命题;“”的否定是“”,故是假命题,是真命题.所以均为假命题,为真命题,选C.9.函数的图象大致是(
)参考答案:C10.圆具有优美的对称性,以圆为主体元素构造的优美图案在工艺美术、陶瓷、剪纸等上有着广泛的应用,如图1,图2,图3,图4,其中图4中的3个阴影三角形的边长均为圆的半径,记图4中的阴影部分区域为M,现随机往图4的圆内投一个点A,则点A落在区域M内的概率是(
)A.
B.
C.
D.参考答案:B阴影三角形边长等于半径点落在区域内的概率为故选
二、填空题:本大题共7小题,每小题4分,共28分11.=___________.参考答案:略12.已知m,n是不重合的两条直线,α,β是不重合的两个平面.下列命题:①若α⊥β,m⊥α,则m∥β;
②若m⊥α,m⊥β,则α∥β;③若m∥α,m⊥n,则n⊥α;
④若m∥α,mβ,则α∥β.其中所有真命题的序号是
.参考答案:13.若的展开式中各项系数之和为64,则展开式的常数项为.参考答案:﹣540【考点】DB:二项式系数的性质.【分析】依据二项式系数和为2n,列出方程求出n,利用二项展开式的通项公式求出常数项.【解答】解:若的展开式中各项系数之和为2n=64,解得n=6,则展开式的常数项为=﹣540,故答案为:﹣540.14.已知函数和函数的图像关于直线对称,则函数的解析式为
.参考答案:略15.函数的定义域为_____参考答案:略16.给出下列函数:①y=x3+x;②y=sinx,;③y=lnx;④y=tanx;其中是奇函数且在(0,+∞)单调递增的函数序号为.(将所有满足条件的都填上)参考答案:①【考点】正切函数的单调性;奇偶性与单调性的综合.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】根据函数的奇偶性和函数的单调性分别判断即可.【解答】解:根据奇函数的定义及函数x3+x的图象知该函数为奇函数,且在(0,+∞)上单调递增,所以①正确;y=tanx,y=sinx是奇函数,在[0,+∞)不单调,所以不正确.y=lnx是非奇非偶函数,所以不正确.故答案为:①.【点评】本题考查了函数的单调性和奇偶性问题,是一道基础题.17.
B.(几何证明选做题)如图,
且AB=6,AC=4,AD=12,则AE=_______.参考答案:2本题考查了三角形的相似性以及推理能力,难度一般。
因为∽,所以三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题12分)已知
(1)若在定义域内单调递增,求的取值范围;(2)当=-2时,记得极小值为。若,求证:.参考答案:(1)
(2)见解析【知识点】导数的应用.解析:(1)依题意恒成立,令在单调递减,且,在区间上存在唯一零点………3分
在上单调递增,在上单调递减。由得
………5分(2)当时,,令,显然在区间单调递减,又,故存在唯一实数,使得在上单调递增,在上单调递减。即在上单调递增,在上单调递减。又,,由知,在()上单调递减,在()上单调递增.不妨设由,则令,则==………8分又在上单调递减,所以<===0在上单调递减,<=0,即:又=<=……9分
又在上单调递减
………12分19.
(本小题满分16分)已知椭圆的两个焦点分别为,,点与椭圆短轴的两个端点的连线相互垂直.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线与椭圆相交于,两点,设点,记直线,的斜率分别为,,求证:为定值.参考答案:解:(Ⅰ)依题意,由已知得
,,由已知易得,解得.
…3分
则椭圆的方程为.
………………4分(II)①当直线的斜率不存在时,由解得.设,,则为定值.………6分②当直线的斜率存在时,设直线的方程为:.将代入整理化简,得.…7分依题意,直线与椭圆必相交于两点,设,,则,.
……9分又,,所以
………10分
.…….………………15分综上得为常数2.
.…….………………16分20.如图,直角梯形CDEM中,CD∥EM,ED⊥CD,B是EM上一点,且CD=BM=CM=2,EB=ED=1,沿BC把△MBC折起得到△ABC,使平面ABC⊥平面BCDE.(Ⅰ)证明:平面EAD⊥平面ACD.(Ⅱ)求二面角E﹣AD﹣B的大小.参考答案:考点:二面角的平面角及求法;平面与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(Ⅰ)过B作BH⊥CD于H,通过勾股定理可得AC⊥BC,利用面面垂直的性质定理及判定定理可得结论;(Ⅱ)以D为原点,建立如图所示的空间直角坐标系D﹣xyz,则所求角的余弦值为平面ADE的一个法向量与平面ABD的一个法向量的夹角的余弦值的绝对值,计算即可.解答: (Ⅰ)证明:过B作BH⊥CD于H,则CH=BH=1,∴BC=,又AC=,AB=2,∴AC2+BC2=AB2,∴AC⊥BC,又∵平面ABC⊥平面BCDE,且平面ABC∩平面BCDE=BC,∴AC⊥平面BCDE,∴AC⊥DE,又CD⊥DE,AC∩CD=C,∴DE⊥平面ACD,又DE?平面EAD,∴平面EAD⊥平面ACD;(Ⅱ)解:以D为原点,建立如图所示的空间直角坐标系D﹣xyz,由题意可知D(0,0,0),E(1,0,0),A(0,2,),B(1,1,0),则=(0,2,),=(1,0,0),=(1,1,0),设平面ADE的一个法向量为=(x1,y1,z1),由,得,可取=(0,﹣1,),设平面ABD的一个法向量为=(x2,y2,z2),由,得,可取=(1,﹣1,),于是===,由题意可知,所求二面角是锐二面角,∴所求二面角E﹣AD﹣B的大小是.点评:本题考查直线与平面垂直的判定,二面角的计算,面面垂直的判定,考查空间想象能力,计算能力,注意解题方法的积累,属于中档题.21.设函数①若的图象上有两条与y轴垂直的切线,求实数a的取值范围。②当a=2时,求在,上的最大值和最小值。参考答案:解析:①得由题可知,方程有两个不等的实数根②
则
设
解得
X0(0,2)2(2,3)3f(x)
+0-
f(x)5↑极大值↓由上表可知,上最大值为,最小值22.(本小题满分12分)在平面直角坐标系中,点A(-1,-2)、B(2,3)、C(-2,-1)。(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;(2)设实数t满足,求t的值。参考答案:(方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗救助计划
- 《头部CT概述》课件
- 《求职简历的写作》课件
- 言语治疗技术失语症听理解评估
- 《纺织品工艺》课件
- 重庆市第一中学2019-2020学年高一下学期期末考试化学试题(解析版)
- 小组游戏带领班级分组学号尾号每组课前模拟并带领一
- 妇科手术患者血栓管理
- 社会保险发展历史社会保险第三讲
- 《终修订版装修手册》课件
- 2024年医疗器械经营质量管理规范培训课件
- 景区旅游安全风险评估报告
- GB/T 36187-2024冷冻鱼糜
- 22G101三维彩色立体图集
- 建筑施工安全生产治本攻坚三年行动方案(2024-2026年)
- DL-T 1476-2023 电力安全工器具预防性试验规程
- 国家开放大学《心理健康教育》形考任务1-9参考答案
- MOOC 法理学-西南政法大学 中国大学慕课答案
- (高清版)DZT 0399-2022 矿山资源储量管理规范
- 辩论赛评分表(完整版)
- 每日工作汇报表格
评论
0/150
提交评论