山东省淄博市美术中学高中部2021年高一数学理月考试卷含解析_第1页
山东省淄博市美术中学高中部2021年高一数学理月考试卷含解析_第2页
山东省淄博市美术中学高中部2021年高一数学理月考试卷含解析_第3页
山东省淄博市美术中学高中部2021年高一数学理月考试卷含解析_第4页
山东省淄博市美术中学高中部2021年高一数学理月考试卷含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省淄博市美术中学高中部2021年高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若cos2α=,则sin4α+cos4α的值是()A.B.C. D.参考答案:A【考点】同角三角函数基本关系的运用.【分析】利用同角三角函数的基本关系、二倍角的余弦公式,求得sin2α和cos2α的值,可得sin4α+cos4α的值.【解答】解:∵cos2α=2cos2α﹣1=,∴cos2α=,∴sin2α=1﹣cos2α=,则sin4α+cos4α=+=,故选:A.2.若命题,是真命题,则实数的取值范围是()A.或

B.C.

D.参考答案:B3.参考答案:D略4.设是一条直线,是两个不同的平面,则以下命题正确的是()A.若,则

B.若,则C.若,则

D.若,则参考答案:D试题分析:若,则或,故A错误;若,则或,故B错误;若,则或,故D错误;若,由两平面平行的性质,我们可得,D正确,故选D.考点:空间直线与平面的位置关系.5.已知f(x﹣1)=x2+4x﹣5,则f(x)的表达式是()A.f(x)=x2+6x B.f(x)=x2+8x+7 C.f(x)=x2+2x﹣3 D.f(x)=x2+6x﹣10参考答案:A【考点】函数解析式的求解及常用方法.【分析】【方法﹣】用换元法,设t=x﹣1,用t表示x,代入f(x﹣1)即得f(t)的表达式;【方法二】凑元法,把f(x﹣1)的表达式x2+4x﹣5凑成含(x﹣1)的形式即得f(x)的表达式;【解答】解:【方法﹣】设t=x﹣1,则x=t+1,∵f(x﹣1)=x2+4x﹣5,∴f(t)=(t+1)2+4(t+1)﹣5=t2+6t,f(x)的表达式是f(x)=x2+6x;【方法二】∵f(x﹣1)=x2+4x﹣5=(x﹣1)2+6(x﹣1),∴f(x)=x2+6x;∴f(x)的表达式是f(x)=x2+6x;故选:A.6.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(﹣∞,0](x1≠x2),都有(x2﹣x1)?[f(x2)﹣f(x1)]>0,则()A.f(﹣2)<f(1)<f(3) B.f(1)<f(﹣2)<f(3) C.f(3)<f(﹣2)<f(1) D.f(3)<f(1)<f(﹣2)参考答案:C【考点】函数单调性的性质;函数单调性的判断与证明.【分析】先根据对任意的x1,x2∈(﹣∞,0](x1≠x2),都有(x2﹣x1)?[f(x2)﹣f(x1)]>0,可得函数f(x)在(﹣∞,0](x1≠x2)单调递增.进而可推断f(x)在[0,+∞)上单调递减,进而可判断出f(3),f(﹣2)和f(1)的大小.【解答】解:∵对任意的x1,x2∈(﹣∞,0](x1≠x2),都有(x2﹣x1)?[f(x2)﹣f(x1)]>0,故f(x)在x1,x2∈(﹣∞,0](x1≠x2)单调递增.又∵f(x)是偶函数,∴f(x)在[0,+∞)上单调递减,且满足n∈N*时,f(﹣2)=f(2),由3>2>1>0,得f(3)<f(﹣2)<f(1),故选:C.7.已知是定义域为(-∞,+∞)的奇函数,满足.若,则(

)A.-2018

B.0

C.2

D.50参考答案:C8.当a>1时,在同一坐标系中,函数的图象是().

参考答案:A9.如下图,汉诺塔问题是指有3根杆子A,B,C.B杆上有若干碟子,把所有碟子从B杆移到A杆上,每次只能移动一个碟子,大的碟子不能叠在小的碟子上面.把B杆上的4个碟子全部移到A杆上,最少需要移动(

)次.

A.12

B.15

C.17

D.19参考答案:B10.log525=()A.5 B.2 C.3 D.4参考答案:B【考点】对数的运算性质.【分析】利用对数的运算法则即可得出.【解答】解:原式==2.故选:B.二、填空题:本大题共7小题,每小题4分,共28分11.设x,y满足约束条件,则目标函数的最大值为______.参考答案:7【分析】首先画出可行域,然后判断目标函数的最优解,从而求出目标函数的最大值.【详解】如图,画出可行域,作出初始目标函数,平移目标函数,当目标函数过点时,目标函数取得最大值,,解得,.故填:7.【点睛】本题考查了线性规划问题,属于基础题型.12.函数

参考答案:略13.设函数这两个式子中的较小者,则的最大值为___________.参考答案:6略14.若sin(﹣α)=,则cos(+2α)的值为. 参考答案:【考点】二倍角的余弦;角的变换、收缩变换. 【分析】利用二倍角的余弦公式把要求的式子化为2﹣1,再利用诱导公式化为2﹣1,将条件代入运算求得结果. 【解答】解:∵=cos2(+α)=2﹣1=2﹣1=2×﹣1=, 故答案为:. 【点评】本题考查诱导公式、二倍角的余弦公式的应用,把要求的式子化为2﹣1=2﹣1,是解题的关键. 15.设函数f(lgx)的定义域为[0.1,100],则函数的定义域为

.参考答案:[﹣2,4]【考点】对数函数的定义域.【专题】函数的性质及应用.【分析】先由函数f(lgx)的定义域求出函数f(x)的定义域,然后求得函数f()的定义域.【解答】解:因为函数f(lgx)的定义域为[0.1,100],由0.1≤x≤100,得:﹣1≤lgx≤2,所以函数f(x)的定义域为[﹣1,2],再由,得:﹣2≤x≤4,所以函数f()的定义域为[﹣2,4].故答案为[﹣2,4].【点评】本题考查了对数函数的定义域,考查了复合函数定义域的求法,给出了函数f(x)的定义域为[a,b],求函数f[g(x)]的定义域,让g(x)∈[a,b],求解x即可,给出了f[g(x)]的定义域,求函数f(x)的定义域,就是求函数g(x)的值域,此题是基础题.16.设函数f(x)=,则f(f(﹣4))=

.参考答案:3【考点】函数的值.【分析】先求出f(﹣4)=()﹣4﹣7=9,从而f(f(﹣4))=f(9),由此能求出结果.【解答】解:∵f(x)=,∴f(﹣4)=()﹣4﹣7=9,f(f(﹣4))=f(9)==3.故答案为:3.17.等差数列{an}的公差为d,其前n项和为Sn,当首项和d变化时,是一个定值,则使Sn为定值的n的最小值为_____▲______.参考答案:13根据等差数列的性质可知,所以得到是定值,从而得到为定值,故答案是13.

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.

已知函数,.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数的最大值,并求使取得最大值的的集合.参考答案:19.已知函数f(x)=cos2x+(m﹣2)sinx+m,x∈R,m是常数.(1)当m=1时,求函数f(x)的值域;(2)当时,求方程f(x)=0的解集;(3)若函数f(x)在区间上有零点,求实数m的取值范围.参考答案:【考点】函数与方程的综合运用;三角函数的最值.【专题】计算题;解题思想;方程思想;三角函数的图像与性质.【分析】(1)当m=1时,化简函数的解析式,利用正弦函数的最值以及二次函数的最值求解即可.(2)当时,化简f(x)=0,即,求解即可.(3)利用换元法1+sinx=t,求出自变量的范围,判断函数的单调性,然后求解函数的最值.【解答】解:f(x)=cos2x+(m﹣2)sinx+m=1﹣sin2x+(m﹣2)sinx+m=﹣sin2x+(m﹣2)sinx+m+1…(1)当m=1时,当时,,当sinx=1时,f(x)min=0所以,当m=1时,函数f(x)的值域是;…(2)当时,方程f(x)=0即,即2sin2x+11sinx+5=0,解得,(sinx=﹣5已舍)…,和所以,当时,方程f(x)=0的解集是…(3)由f(x)=0,得﹣sin2x+(m﹣2)sinx+m+1=0,﹣sin2x+(m﹣2)sinx+m+1=0,(1+sinx)m=sin2x+2sinx﹣1,∵,∴1+sinx≠0,∴…令1+sinx=t,∵,∴令设=,∴g(t1)<g(t2),∴g(t)在上是增函数,∴g(t)在上的值域是,∴m∈….【点评】本题考查函数与方程的应用,三角函数的最值的求法,换元法的应用,考查计算能力.20.已知:函数f(x)=+lg(3x﹣9)的定义域为A,集合B={x|x﹣a<0,a∈R},(1)求:集合A;(2)求:A∩B≠?,求a的取值范围.参考答案:【考点】对数函数的定义域;集合关系中的参数取值问题.【分析】(1)被开方数大于等于0,对数的真数大于0,可求出集合A.(2)由A∩B≠?,可知A与B有公共元素,可解出实数a的取值范围.【解答】解(1)∵f(x)=+lg(3x﹣9)∴4﹣x≥0且3x﹣9>0,即x≤4且x>2,则A={x|2<x≤4}(2)B={x|x﹣a<0,a∈R}={x|x<a},由A∩B≠?,因此a>2,所以实数a的取值范围是(2,+∞).21.(6分)已知点A,点B,若点C在直线上,且.求点C的坐标.参考答案:设C(x,3x),则

22.设函数f(x)=log4(4x+1)+ax(a∈R).(1)若f(x)是定义在R上的偶函数,求a的值;(2)若关于x的不等式f(x)+f(﹣x)≤2log4m对任意的x∈[0,2]恒成立,求正实数m的取值范围.参考答案:【考点】函数恒成立问题.【分析】(1)若函数f(x)是定义在R上的偶函数,则f(x)=f(﹣x)恒成立,运用对数的运算性质,化简进而可得a值;(2)若不等式f(x)+f(﹣x)≤2log4m对任意x∈[0,2]恒成立,化简即有4x+1≤m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论