山东省淄博市淄矿集团第二中学2021年高一数学理模拟试卷含解析_第1页
山东省淄博市淄矿集团第二中学2021年高一数学理模拟试卷含解析_第2页
山东省淄博市淄矿集团第二中学2021年高一数学理模拟试卷含解析_第3页
山东省淄博市淄矿集团第二中学2021年高一数学理模拟试卷含解析_第4页
山东省淄博市淄矿集团第二中学2021年高一数学理模拟试卷含解析_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省淄博市淄矿集团第二中学2021年高一数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设,则(

)A.

B.

C.

D.参考答案:C2.“”是“”的

)(A)充分非必要条件

(B)必要非充分条件

(C)充要条件

(D)既非充分又非必要条件参考答案:A3.若△的三个内角满足,则△

)A.一定是锐角三角形

B.一定是直角三角形C.一定是钝角三角形

D.可能是锐角三角形,也可能是钝角三角形

参考答案:C略4.在,已知,则(▲)A.

B.

C.

D.参考答案:C略5.函数的单调递增区间是(

)A.

B.C.

D.参考答案:D6.若,则下列不等式成立的是A.

B.

C.

D.参考答案:C7.已知点,.若直线与线段相交,则的取值范围是().A. B. C. D.参考答案:D解:∵直线过点,连接与线段上的点时直线的斜率最小,为,连接与线段上的点时直线的斜率最大,为.∴的取值范围是.故选:.8.设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于(

)A.

B.2

C.3

D.4参考答案:D∵O为任意一点,不妨把A点看成O点,则=,∵M是平行四边形ABCD的对角线的交点,∴=2=4

9.下列四个图形中,不是以x为自变量的函数的图象是()A. B. C. D.参考答案:C【考点】函数的概念及其构成要素.【分析】根据函数的定义中“定义域内的每一个x都有唯一函数值与之对应”判断.【解答】解:由函数定义知,定义域内的每一个x都有唯一函数值与之对应,A、B、D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的值与之对应,不符合函数定义.故选C.10.函数的图象过定点

)A.(1,2)

B.(2,1)

C.(-2,1)

D.(-1,1)参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.已知函数在区间[0,2]上是减函数,则实数a的取值范围是

.参考答案:;12.(4分)计算:log6+(6)×(0.2)﹣2﹣lg4﹣lg25﹣log6

.参考答案:10考点: 对数的运算性质.专题: 函数的性质及应用.分析: 化带分数为假分数,化负指数为正指数,然后结合有理指数幂的运算性质及对数的运算性质化简求值.解答: 解:log6+(6)×(0.2)﹣2﹣lg4﹣lg25﹣log6===2+=10.故答案为:10.点评: 本题考查了有理指数幂的运算性质及对数的运算性质,是基础的计算题.13.若,且,则向量与的夹角为.参考答案:

解析:,或画图来做14.函数的单调增区间是________.参考答案:,【分析】先利用诱导公式化简,即可由正弦函数单调性求出。【详解】因为,所以的单调增区间是,。【点睛】本题主要考查诱导公式以及正弦函数的性质——单调性的应用。15.设关于的不等式组表示的平面区域为.若在平面区域内存在点,满足,则实数的取值范围是__.

参考答案:

16.已知锐角△ABC的外接圆的半径为1,,则△ABC的面积的取值范围为_____.参考答案:【分析】由已知利用正弦定理可以得到b=2sinB,c=2sin(﹣B),利用三角形面积公式,三角函数恒等变换的应用可求S△ABC═sin(2B﹣)+,由锐角三角形求B的范围,进而利用正弦函数的图象和性质即可得解.【详解】解:∵锐角△ABC的外接圆的半径为1,A=,∴由正弦定理可得:,可得:b=2sinB,c=2sin(﹣B),∴S△ABC=bcsinA=×2sinB×2sin(﹣B)×=sinB(cosB+sinB)=sin(2B﹣)+,∵B,C为锐角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案为:(1,].【点睛】本题主要考查了正弦定理,三角形面积公式,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了计算能力和转化思想,属于中档题.17.已知在三棱锥中,,,,则该棱锥的外接球半径

参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(16分)已知等差数列的公差,中的部分项组成的数列恰好成等比数列,其中,求:(1);(2)求数列的前n项和.参考答案:由题知,等差数列中,成等比数列,

,,又(2)19.(本小题满分12分)函数,同时满足:是偶函数,且关于()对称,在是单调函数,求函数参考答案:……….3分………………………..6分在是单调函数……………………9分

(写成)…………12分20.已知表1是某年部分日期的天安门广场升旗时刻表.表1:某年部分日期的天安门广场升旗时刻表日期升旗时刻日期升旗时刻日期升旗时刻日期升旗时刻1月1日7:363月13日6:305月15日5:009月5日6:451月23日7:303月22日6:156月9日4:4510月6日6:152月5日7:154月10日5:456月16日4:4510月21日6:302月21日7:004月20日5:306月21日4:4511月3日6:453月3日6:455月1日5:158月20日5:3012月18日7:30将表1中的升旗时刻化为分数后作为样本数据(如:可化为).(Ⅰ)请补充完成下面的频率分布表及频率分布直方图;分组频数频率4:00—4:593

5:00—5:59

0.256:00—6:59

7:00—7:595

合计20

(Ⅱ)若甲学校从上表日期中随机选择一天观看升旗.试估计甲学校观看升旗的时刻早于6:00的概率;(Ⅲ)若甲,乙两个学校各自从表1中五月、六月的日期中随机选择一天观看升旗,求两校观看升旗的时刻均不早于5:00的概率.参考答案:(Ⅰ)详见解析;(Ⅱ);(Ⅲ).【分析】(Ⅰ)由天安门广场升旗时刻表即可得到频率分布表及频率分布直方图;(Ⅱ)利用古典概型概率公式可得结果;(Ⅲ)利用古典概型概率公式可得结果.【详解】解:(Ⅰ)频率分布表及频率分布直方图如下:分组频数频率4:00—4:5930.155:00—5:5950.256:00—6:5970.357:00—7:5950.25合计201

(II)由表知,甲学校从上表20次日期中随机选择一天观看升旗,观看升旗的时刻早于6:00的日期为8次,所以,估计甲学校观看升旗的时刻早于6:00的概率为.(III)由表知,五月、六月的日期中不早于5:00的时间为2次,共5次.设按表1中五月、六月的日期先后顺序,甲选择一天观看升旗分别为,乙选择一天观看升旗分别为,则甲,乙两个学校观看升旗时刻的基本事件空间为:其中基本事件为25个.设两校观看升旗的时刻均不早于5:00为事件,包含基本事件为:,共4个,所以,即两校观看升旗的时刻均不早于5:00的概率为.【点睛】本小题主要考查了频率分布直方图、古典概型概率公式的应用,属于中档题.利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….…这样才能避免多写、漏写现象的发生.21.已知数列{an}的首项为1,且,数列{bn}满足,,对任意,都有.(Ⅰ)求数列{an}、{bn}的通项公式;(Ⅱ)令,数列{an}的前n项和为Sn.若对任意的,不等式恒成立,试求实数的取值范围.参考答案:(Ⅰ),;(Ⅱ)试题分析:(Ⅰ)由,得,又,两式相减得,整理得,即,又因为,,利用累积法得,从而可求出数学的通项公式为;在数列中,由,得,且,所以数学是以首项为,公比为的等比数列,从而数列的通项公式为.(Ⅱ)由题意得,,两式相减得,由等比数列前项和公式可求得,由不等式恒成立,得恒成立,即()恒成立,构造函数(),当时,恒成立,则不满足条件;当时,由二次函数性质知不恒成立;当时,恒成立,则满足条件.综上所述,实数的取值范围是.试题解析:(Ⅰ)∵,∴(),两式相减得,,∴,即(),又因为,,从而∴(),故数列的通项公式().在数列中,由,知数列是等比数列,首项、公比均为,∴数列的通项公式.(Ⅱ)∴①∴②由①-②,得,∴,不等式即为,即()恒成立.方法一、设(),当时,恒成立,则不满足条件;当时,由二次函数性质知不恒成立;当时,恒成立,则满足条件.综上所述,实数λ的取值范围是.方法二、也即()恒成立,令.则,由,单调递增且大于0,∴单调递增∴∴实数λ的取值范围是.考点:1.等差数列、等比数列;2.不等式恒成立问题.22.阅读下面材料,尝试类比探究函数y=x2﹣的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.阅读材料:我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.对于函数y=,我们可以通过表达式来研究它的图象和性质,如:(1)在函数y=中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.(2)在函数y=中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;(3)在函数y=中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;(4)由函数y=可知f(﹣x)=﹣f(x),即y=是奇函数,可以推测出,对应的图象关于原点对称.结合以上性质,逐步才想出函数y=对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.参考答案:【考点】函数的图象.【专题】综合题;函数思想;数形结合法;函数的性质及应用;推理和证明.【分析】通过函数的定义域,函数与x的交点情况,y值的变化趋势,函数的奇偶性和函数的单调性,归纳函数的性质即可.【解答】解:(1)在y=x2﹣中,x≠0,可以推测出:对应的图象不经过y轴,即与y轴不相交,(2)令y=0,即x2﹣=0,解得x=±1,可以推测出,对应的图象与x相交,交点坐标为(1,0)和(﹣1,0),(3)在y=x2﹣中,当0<x<1时,>1>x2,则y<0,当x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论