版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省淄博市尚庄联办中学2022年高三数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近于圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的(四舍五入精确到小数点后两位)的值为()(参考数据:sin15°=0.2588,sin75°=0.1305)A.3.10 B.3.11 C.3.12 D.3.13参考答案:B【考点】EF:程序框图.【分析】列出循环过程中S与k的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得:k=0,S=3sin60°=,k=1,S=6×sin30°=3,k=2,S=12×sin15°=12×0.2588=3.1056≈3.11,退出循环,输出的值为3.11.故选:B.2.在中,若,则的形状是 (
)A.等腰三角形
B.等边三角形
C.直角三角形
D.等腰直角三角形参考答案:B略3.“x<2”是“x2<4”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】先求出x2<4的充要条件,结合集合的包含关系判断即可.【解答】解:由x2<4,解得:﹣2<x<2,故x<2是x2<4的必要不充分条件,故选:B.4.在复平面内,到复数对应的点的距离与到直线的距离相等的点的轨迹是(
)A.抛物线
B.双曲线
C.椭圆
D.直线参考答案:D考点:两点间距离公式和点到直线的距离公式.5.设复数z的共轭复数为,若z=1+i(i为虚数单位),则复数﹣的虚部为()A.i B.﹣i C.1 D.﹣1参考答案:D【考点】复数代数形式的混合运算.【分析】利用复数的运算法则、虚部的定义即可得出.【解答】解:复数﹣==﹣1+i=2(1﹣i)﹣1+i=1﹣i其虚部为﹣1.故选:D.6.在复平面内,复数z=对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:C【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数z,求出在复平面内,复数z对应的点的坐标,则答案可求.【解答】解:z==,在复平面内,复数z=对应的点的坐标为:(,﹣1),位于第三象限.故选:C.7.设等差数列的前项和是,若(N*,且),则必定有
A.,且 B.,且
C.,且
D.,且参考答案:A略8.(定义在R上的函数f(x)=,若关于x的方程f2(x)﹣mf(x)+m﹣1=0(其中m>2)有n个不同的实数根x1,x2,…xn,则f(xi)的值为() A. B. C. D. 参考答案:B9.已知不等式的解集为,点在直线上,其中,则的最小值为
(A)
(B)8
(C)9
(D)12参考答案:C略10.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】φ=?f(x)=Acos(ωx+)?f(x)=﹣Asin(ωx)(A>0,ω>0,x∈R)是奇函数.f(x)为奇函数?f(0)=0?φ=kπ+,k∈Z.所以“f(x)是奇函数”是“φ=”必要不充分条件.【解答】解:若φ=,则f(x)=Acos(ωx+)?f(x)=﹣Asin(ωx)(A>0,ω>0,x∈R)是奇函数;若f(x)是奇函数,?f(0)=0,∴f(0)=Acos(ω×0+φ)=Acosφ=0.∴φ=kπ+,k∈Z,不一定有φ=“f(x)是奇函数”是“φ=”必要不充分条件.故选B.【点评】本题考查充分条件、必要条件和充要条件的判断,解题时要认真审题,仔细解答,注意三角函数性质的灵活运用.二、填空题:本大题共7小题,每小题4分,共28分11.在等差数列中,已知,则_________参考答案:2012.将杨辉三角中的每一个数都换成,就得到一个如下图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出,其中
。令,则
。
…参考答案:答案:r+1,解析:第一个空通过观察可得。=(1+-1)+()+(+-)+(+-)+…+(+-)+(+-)=(1+++…+)+(++++…+)-2(++…+)=〔(1+++…+)-(++…+)〕+〔(++++…+)-(++…+)〕=1-+-=+-所以13.若方程表示双曲线,则实数的取值范围是
.参考答案:14.已知复数,则复数=
。参考答案:i
15.如图.网络纸上小正方形的边长为1.粗实线画出的是某几何体的三视图,则该几何体的体积为______.参考答案:【分析】根据三视图知该几何体是三棱柱与半圆锥的组合体,结合图中数据即可求出体积.【详解】根据三视图知,该几何体是三棱柱与半圆锥的组合体,如图所示;结合图中数据,计算它的体积为.故答案为:.【点睛】本题以三视图为载体考查几何体体积,解题的关键是对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系,然后结合相应的公式求解.16.设函数在上存在导数,对任意的有,且在上.若,则实数的取值范围
.参考答案:17.已知全集,集合,则
.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上.(1)求数列的通项公式;(2)设,是数列的前n项和,求使得对所有都成立的最小正整数m.参考答案:(Ⅰ)设这二次函数f(x)=ax2+bx(a≠0),则f`(x)=2ax+b,由于f`(x)=6x-2,得a=3,
b=-2,所以
f(x)=3x2-2x.又因为点均在函数的图像上,所以=3n2-2n.当n≥2时,an=Sn-Sn-1=(3n2-2n)-=6n-5.当n=1时,a1=S1=3×12-2=6×1-5,所以,an=6n-5()(Ⅱ)由(Ⅰ)得知==,故Tn===(1-).因此,要使(1-)<()成立的m,当且仅当≤,即m≥10,所以满足要求的最小正整数m为10.19.已知函数,为常数。(1)若曲线在点处的切线与直线垂直,求实数的值。(2)求的单调区间。
参考答案:20.(本小题满分13分)随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.参考答案:解析:(1)由茎叶图可知:甲班身高集中于之间,而乙班身高集中于
之间。因此乙班平均身高高于甲班;
(2)
甲班的样本方差为
=57
(3)设身高为176cm的同学被抽中的事件为A;
从乙班10名同学中抽中两名身高不低于173cm的同学有:(181,173)
(181,176)
(181,178)(181,179)(179,173)(179,176)(179,178)
(178,173)
(178,
176)
(176,173)共10个基本事件,而事件A含有4个基本事件;
;21.(12分)(2015?淄博一模)已知函数f(x)=sinωxsin(+ωx)﹣cos2ωx﹣(ω>0),其图象两相邻对称轴间的距离为.(Ⅰ)求ω的值;(Ⅱ)设△ABC的内角A,B,C的对边分别为a,b,c,且c=,f(C)=0,若向量=(1,sinA)与向量=(3,sinB)共线,求a,b的值.参考答案:【考点】:余弦定理;两角和与差的正弦函数.【专题】:三角函数的图像与性质;解三角形.【分析】:(Ⅰ)化简函数解析式可得f(x)=sin(2ωx)﹣1,由其图象两相邻对称轴间的距离为,可得最小正周期为T=π,即可解得ω.(Ⅱ)由(Ⅰ)可知sin(2C﹣)=1,解得C=,由已知∥可得b﹣3a=0①,由余弦定理,又已知c=,即可解得7=a2+b2﹣ab②,联立方程可解得a,b的值.解:(Ⅰ)f(x)=sinωxsin(+ωx)﹣cos2ωx﹣=sinωxcosωx﹣﹣=sin2ωx﹣cos2ωx﹣1=sin(2ωx)﹣1∵其图象两相邻对称轴间的距离为.∴最小正周期为T=π,∴ω=1.
(Ⅱ)由(Ⅰ)可知:f(x)=sin(2x)﹣1∴sin(2C﹣)=1∵0<C<π,∴﹣<2C﹣<,∴2C﹣=,即C=由已知∥可得s
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 灭火器的紧急逃生用法
- 概率统计算法复习题
- 屋面工程施工合同细节
- 违反工作纪律整改报告
- 2025年浙教新版九年级物理下册阶段测试试卷含答案
- 机器抵押合同(2篇)
- 更换厨房用品合同(2篇)
- 服务记录协议书(2篇)
- 2025年苏教新版八年级历史下册月考试卷
- 2025年粤教沪科版选修历史上册阶段测试试卷
- 罗沙司他治疗肾性贫血的疗效与安全性评价演示稿件
- 农村高中思想政治课时政教育研究的中期报告
- 环卫清扫保洁、垃圾清运及绿化服务投标方案(技术标 )
- 医院定岗定编方案文档
- 4-熔化焊与热切割作业基础知识(一)
- 2023年200MW储能电站储能系统设计方案
- 个人安全与社会责任的基本知识概述
- 建筑装饰工程计量与计价试题一及答案
- 简易劳务合同电子版
- 明代文学绪论
- 体育赛事的策划、组织与实施 体育赛事利益相关者
评论
0/150
提交评论