山东省淄博市召口乡中学2022-2023学年高三数学理测试题含解析_第1页
山东省淄博市召口乡中学2022-2023学年高三数学理测试题含解析_第2页
山东省淄博市召口乡中学2022-2023学年高三数学理测试题含解析_第3页
山东省淄博市召口乡中学2022-2023学年高三数学理测试题含解析_第4页
山东省淄博市召口乡中学2022-2023学年高三数学理测试题含解析_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省淄博市召口乡中学2022-2023学年高三数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.2017年江苏南京第二师范学院建设65周年院庆前夕,学院从8女4男中选出6人排练民族舞《小河淌水》以备院庆演出.如果按性别分层抽取,则不同的抽取方法种数为(

)A.

B.

C.

D.参考答案:C据分层抽样,需从男生中抽取4人,女生中抽取2人,故不同的抽样方法共有种,故选C.

2.设,则a,b,c大小关系正确的是

A.

B.C.

D.参考答案:B略3.已知函数在区间上是增函数,且在区间上恰好取得一次最大值,则的取值范围是(

)A. B.

C.

D.参考答案:C4.某三棱锥的三视图如图所示,则该三棱锥的各个面中,最大的面积是(

)A.B.C.D.参考答案:A5.已知向量,,其中=(﹣1,),且⊥(﹣3),则在上的投影为()A. B.﹣ C. D.﹣参考答案:C【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】利用在上的投影为即可得出.【解答】解:由已知,=(﹣1,),且⊥(﹣3),==4﹣3,,所以在上的投影为;故选C.【点评】本题考查了向量垂直与数量积的关系、向量的投影,属于基础题.6.若实数x,y满足的约束条件,将一颗骰子投掷两次得到的点数分别为a,b,则函数z=2ax+by在点(2,﹣1)处取得最大值的概率为()A. B. C. D.参考答案:D【考点】几何概型;简单线性规划.【分析】利用古典概型概率计算公式,先计算总的基本事件数N,再计算事件函数z=2ax+by在点(2,﹣1)处取得最大值时包含的基本事件数n,最后即可求出事件发生的概率.【解答】解:画出不等式组表示的平面区域,∵函数z=2ax+by在点(2,﹣1)处取得最大值,∴直线z=2ax+by的斜率k=﹣≤﹣1,即2a≥b.∵一颗骰子投掷两次分别得到点数为(a,b),则这样的有序整数对共有6×6=36个其中2a≥b的有(1,1),(1,2),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共30个则函数z=2ax+by在点(2,﹣1)处取得最大值的概率为=.故选:D.7.已知偶函数满足,且当时,,关于x的不等式在区间[-200,200]上有且只有300个整数解,则实数a的取值范围是(

)A. B.C. D.参考答案:D【分析】根据的周期和对称性得出不等式在上的整数解的个数为3,计算的值得出的范围.【详解】因为偶函数满足,所以,所以的周期为且的图象关于直线对称,由于上含有50个周期,且在每个周期内都是轴对称图形,所以关于不等式在上有3个整数解,当时,,由,得,由,得,所以函数在上单调递增,在上单调递减,因为,,所以当时,,所以当时,在上有4个整数解,不符合题意,所以,由可得或,显然在上无整数解,故而在上有3个整数解,分别为,所以,,,所以.故选:D【点睛】本题考查了函数的周期性,考查了函数的对称性,考查了利用导数研究函数的单调性,考查了一元二次不等式,属于较难题.8.斜率为的直线与双曲线恒有两个公共点,则双曲线离心率的取值范围是A. B. C. D.参考答案:B略9.一个几何体的三视图如图所示,则这个几何体的直观图为()A. B. C. D.参考答案:B【考点】由三视图求面积、体积.【分析】由已知的三视图可得:该几何体是一个以俯视图为底面的四棱锥,而且有一侧棱垂直与底面,结合俯视图,可得结论.【解答】解:由已知的三视图可得:该几何体是一个以俯视图为底面的四棱锥,而且有一侧棱垂直与底面,结合俯视图,可知B满足,故选B.10.若函数,当时,,若在区间内恰有一个零点,则实数的取值范围是(

).

.

.

.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.若函数f(x)=logax(0<a<1)在区间a,2a上的最大值是最小值的3倍,则a的值为________.参考答案:12.已知实数满足不等式组,则的最小值为_________.参考答案:13.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。由图中数据可知a=

。若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为

。参考答案:0.030

314.在复平面内,复数对应的点位于第

象限.参考答案:四略15.在极坐标系中,点的极坐标为,直线的极坐标方程为,则点到直线的距离等于.参考答案:试题分析:由题意可知直线的直角坐标方程为,根据坐标间的转换关系,可知点的直角坐标为,根据点到直线的距离公式,可知所求的值为.考点:极坐标方程和直角坐标方程的转化,点到直线的距离.16.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是. 参考答案:1和3【考点】进行简单的合情推理. 【分析】可先根据丙的说法推出丙的卡片上写着1和2,或1和3,分别讨论这两种情况,根据甲和乙的说法可分别推出甲和乙卡片上的数字,这样便可判断出甲卡片上的数字是多少. 【解答】解:根据丙的说法知,丙的卡片上写着1和2,或1和3; (1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3; ∴根据甲的说法知,甲的卡片上写着1和3; (2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3; 又甲说,“我与乙的卡片上相同的数字不是2”; ∴甲的卡片上写的数字不是1和2,这与已知矛盾; ∴甲的卡片上的数字是1和3. 故答案为:1和3. 【点评】考查进行简单的合情推理的能力,以及分类讨论得到解题思想,做这类题注意找出解题的突破口. 17.若直线与函数(的图像有两个公共点,则的取值范围是

.参考答案:因为的图象是由向下平移一个单位得到,当时,作出函数的图象如图,此时,如图象只有一个交点,不成立。当时,,要使两个函数的图象有两个公共点,则有,即,所以的取值范围是。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(1)若函数与的图象恰好相切与点,求实数的值;(2)当时,恒成立,求实数的取值范围;(3)求证:.参考答案:(1);(2)令,则,因为,所以在恒成立的必要条件为,即,所以,又当时,,,令,则,即,所以在递减,所以,即,所以在恒成立的充分条件为,综上可得.(3)设为的前项和,则,要证不等式,只需证:,由(2)知,时,,即(当且仅当时取等号),令,则,即,即,从而原不等式得证.19.已知曲线上的任一点到点的距离减去它到轴的距离的差都是1.(1)求曲线的方程;(2)设直线与曲线交于,两点,若对于任意都有,求的取值范围.参考答案:(1);(2).试题分析:(1)由题意设曲线上的任一点为,则,即;(2)联立方程及,得,设,,则,,所以对任意的恒成立,解得.,,.…………………9分∵对于任意都有,∴对任意的恒成立.则,解得.所以的取值范围是.………………12分考点:直线与圆锥曲线的位置关系.【方法点睛】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.20.(15分)(2015?嘉兴一模)已知直线l:y=kx+1(k≠0)与椭圆3x2+y2=a相交于A、B两个不同的点,记l与y轴的交点为C.(Ⅰ)若k=1,且|AB|=,求实数a的值;(Ⅱ)若=2,求△AOB面积的最大值,及此时椭圆的方程.参考答案:【考点】:椭圆的简单性质.【专题】:圆锥曲线中的最值与范围问题.【分析】:(Ⅰ)若k=1,联立直线和椭圆方程,结合相交弦的弦长公式以及|AB|=,即可求实数a的值;(Ⅱ)根据=2关系,结合一元二次方程根与系数之间的关系,以及基本不等式进行求解即可.解:设A(x1,y1),B(x2,y2),(Ⅰ)由得4x2+2x+1﹣a=0,则x1+x2=,x1x2=,则|AB|==,解得a=2.(Ⅱ)由,得(3+k2)x2+2kx+1﹣a=0,则x1+x2=﹣,x1x2=,由=2得(﹣x1,1﹣y1)=2(x2,y2﹣1),解得x1=﹣2x2,代入上式得:x1+x2=﹣x2=﹣,则x2=,==,当且仅当k2=3时取等号,此时x2=,x1x2=﹣2x22=﹣2×,又x1x2==,则=,解得a=5.所以,△AOB面积的最大值为,此时椭圆的方程为3x2+y2=5.【点评】:本题主要考查椭圆方程的求解,利用直线方程和椭圆方程构造方程组,转化为根与系数之间的关系是解决本题的关键.21.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:x2=P(x2≥k)0.1000.0500.0100.001k2.7063.8416.63510.828参考答案:【考点】BO:独立性检验的应用.【分析】(1)根据分层抽样,求得样本中有25周岁以上组工人60名,25周岁以下组工人40人,由频率分布直方图日平均生产件数不足60件的工人中25周岁以上组有3人,25周岁以下组有2人,随机抽取2人,求得所有可能的结果,根据古典概型公式求得至少抽到一名“25周岁以下组”工人的概率;(2)据2×2列联表,代入求临界值的公式,求出观测值,利用观测值同临界值表进行比较,K2≈1.786<2.706,没有90%的把握认为“生产能手与工人所在的年龄组有关”.【解答】解:(1)由已知得:样本中有25周岁以上组工人60名,25周岁以下组工人40人,所以样本中日平均生产件数不足60件的工人中25周岁以上组有60×0.05=3人,分别记为:A1,A2,A3,25周岁以下组有工人40×0.05=2人,分别记为B1,B2,从中随机抽取2人,所有可能的结果共10种,他们分别是(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B2),(A3,B2),(B1,B2),其中“至少有1名”,25周岁以下组的结果有7种,故所求概率为P=;(2)由频率分别直方图可知:在抽取的100名工人中,“25周岁以上组”中的生产能手60×0.25=15人,“25周岁以下组”中的生产能手

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论