天津第四十五中学2022年高三数学理下学期期末试卷含解析_第1页
天津第四十五中学2022年高三数学理下学期期末试卷含解析_第2页
天津第四十五中学2022年高三数学理下学期期末试卷含解析_第3页
天津第四十五中学2022年高三数学理下学期期末试卷含解析_第4页
天津第四十五中学2022年高三数学理下学期期末试卷含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津第四十五中学2022年高三数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.等腰直角三角形ABC中,∠C=90°,AC=BC=1,点M,N分别是AB,BC中点,点P是△ABC(含边界)内任意一点,则?的取值范围是()A.[﹣,] B.[﹣,] C.[﹣,] D.[,]参考答案:A【考点】平面向量数量积的运算.【分析】选择合适的原点建立坐标系,分别给出动点(含参数)和定点的坐标,结合向量内积计算公式进行求解.【解答】解:以C为坐标原点,CA边所在直线为x轴,建立直角坐标系,则A(1,0),B(0,1),设P(x,y),则且=(﹣1,),=(x﹣,y﹣),则?=﹣x+y+,令t=﹣x+y+,结合线性规划知识,则y=2x+2t﹣当直线t=﹣x+y+经过点A(1,0)时,?有最小值,将(1,0)代入得t=﹣,当直线t=﹣x+y+经过点B时,?有最大值,将(0,1)代入得t=,则?的取值范围是[﹣,],故选:A2.在《周易》中,长横“”表示阳爻,两个短横“”表示阴爻.有放回地取阳爻和阴爻三次合成一卦,共有种组合方法,这便是《系辞传》所说“太极生两仪,两仪生四象,四象生八卦”.有放回地取阳爻和阴爻一次有2种不同的情况,有放回地取阳爻和阴爻两次有四种情况,有放回地取阳爻和阴爻三次,八种情况.所谓的“算卦”,就是两个八卦的叠合,即共有放回地取阳爻和阴爻六次,得到六爻,然后对应不同的解析.在一次所谓“算卦”中得到六爻,这六爻恰好有三个阳爻三个阴爻的概率是(

)A.

B.

C.

D.参考答案:B在一次所谓“算怪”中得到六爻,基本事件的总数为,这六爻恰好有三个阳爻包含的基本数为,所以这六爻恰好有三个阳爻三个阴爻的概率是,故选B.

3.设斜率为2的直线过抛物线的焦点F,且和轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为(

).

A.

B.

C.

D.参考答案:B4.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A)

(B)

(C)

(D)参考答案:A本题主要考查了分步计数原理和古典概型的基础知识,难度较小.甲、乙各参加一个小组,共有3×3=9种情况,两位同学参加同一个小组有3种情况,所以两位同学参加同一个小组的概率为.故选A.5.在平面直角坐标系中,过点的直线与椭圆交于、两点,点是线段的中点.设直线的斜率为,直线的斜率为,则的值等于

参考答案:答案:

6.设f(x)是定义在R上周期为2的奇函数,当0≤x≤1时,f(x)=x2﹣x,则=()A. B. C. D.参考答案:C【考点】3L:函数奇偶性的性质;31:函数的概念及其构成要素.【分析】根据题意,由函数的周期性以及奇偶性分析可得=﹣f()=﹣f(),又由函数在解析式可得f()的值,综合可得答案.【解答】解:根据题意,f(x)是定义在R上周期为2的奇函数,则=﹣f()=﹣f(),又由当0≤x≤1时,f(x)=x2﹣x,则f()=()2﹣()=﹣,则=,故选:C.7.命题“若,则”的逆否命题是A.若,则

B.若,则C.若,则

D.若,则参考答案:D略8.函数的定义域为参考答案:A9.图l是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为、、…、(如表示身高(单位:)在[150,155)内的学生人数).图2是统计图l中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~190(含160,不含190)的学生人数,那么在流程图中的判断框内应填写的条件是A.

B.

C.

D.

参考答案:答案:A10.若直线过曲线的对称中心,则的最小值为( )A、1 B、3 C、 D、 参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11、的值是____________。参考答案:112.(5分)已知函数f(x)=lnx+2x,若f(x2﹣4)<2,则实数x的取值范围.参考答案:(﹣,﹣2)∪(2,)【考点】:函数单调性的性质.【专题】:函数的性质及应用.【分析】:解法一:不等式即ln(x2﹣4)+<2,令t=x2﹣4>0,不等式即lnt+2t<2①.令h(t)=lnt+2t,由函数h(t)的单调性可得x2﹣4<1,从而求得x的范围.解法二:根据函数f(x)=lnx+2x在定义域(0,+∞)上式增函数,f(1)=2,由不等式可得x2﹣4<1,从而求得x的范围.解:解法一:∵函数f(x)=lnx+2x,∴f(x2﹣4)=ln(x2﹣4)+,∴不等式即ln(x2﹣4)+<2.令t=x2﹣4>0,不等式即lnt+2t<2①.令h(t)=lnt+2t,显然函数h(t)在(0,+∞)上是增函数,且h(1)=2,∴由不等式①可得t<1,即x2﹣4<1,即x2<5.由解得﹣<x<﹣2,或2<x<,故答案为:(﹣,﹣2)∪(2,).解法二:由于函数f(x)=lnx+2x,∴f(1)=2,再根据函数f(x)=lnx+2x在定义域(0,+∞)上式增函数,∴由f(x2﹣4)<2可得x2﹣4<1,求得﹣<x<﹣2,或2<x<,故答案为:(﹣,﹣2)∪(2,).【点评】:本题主要考查函数的单调性的应用,体现了转化的数学思想,属于基础题.13.图3是讨论三角函数某个性质的程序框图,若输入,则输出

.参考答案:22

略14.已知O是坐标原点,点A(-1,1)若点M(x,y)为平面区域上的一个动点,则的取值范围是_________.参考答案:令,画出可行域得,填15.已知,则_____________参考答案:16.甲、乙、丙、丁四位同学中仅有一人申请了北京大学的自主招生考试,当他们被问到谁申请了北京大学的自主招生考试时,甲说:“丙或丁申请了”;乙说:“丙申请了”;丙说:“甲和丁都没有申请”;丁说:“乙申请了”,如果这四位同学中只有两人说的是对的,那么申请了北京大学的自主招生考试的同学是______.参考答案:乙先假设甲说的对,即甲或乙申请了但申请人只有一个,(1)如果是甲,则乙说“丙申请了”就是错的,丙说“甲和丁都没申请”就是错的,丁说“乙申请了”也是错的,这样三个错的,不能满足题意,故甲没申请.(2)如果是乙,则乙说“丙申请了”就是错的,丙说“甲和丁都没申请”可以理解为申请人有可能是乙,丙,戊,但是不一定是乙,故说法不对,丁说“乙申请了”也是对的,这样说的对的就是两个是甲和丁满足题意.故答案为乙.17.已知正项等比数列{an}中,a1=1,其前n项和为Sn(n∈N*),且,则S4=.参考答案:15【考点】89:等比数列的前n项和.【分析】由题意先求出公比,再根据前n项和公式计算即可.【解答】解:正项等比数列{an}中,a1=1,且,∴1﹣=,即q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),∴S4==15,故答案为:15.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分10分)【选修4—1:几何证明选讲】如图,已知⊙与⊙相交于、两点,过点A作⊙的切线交⊙O2于点,过点作两圆的割线,分别交⊙、⊙于点、,与相交于点.(I)求证:;(II)若是⊙的切线,且,,求的长.参考答案:解:(I)∵AC是⊙O1的切线,∴∠BAC=∠D,又∵∠BAC=∠E,∴∠D=∠E,∴AD∥EC.····································································(II)设BP=x,PE=y,∵PA=6,PC=2,∴xy=12

①∵AD∥EC,∴=,∴=

②由①、②解得(∵x>0,y>0)∴DE=9+x+y=16,∵AD是⊙O2的切线,∴AD2=DB·DE=9×16,∴AD=12.

19.如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.(Ⅰ)设AD=x(x0),ED=y,求用x表示y的函数关系式,并注明函数的定义域;(Ⅱ)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请给予证明.参考答案:(Ⅰ)在△ADE中,由余弦定理得:

,?

又.?

把?代入?得,

即函数的定义域为.(Ⅱ)如果DE是水管,则,

当且仅当,即时“=”成立,故DEBC,且DE=.

如果DE是参观线路,记,则

∴函数在上递减,在上递增

故.

∴.

即DE为AB中线或AC中线时,DE最长.20.(本小题满分13分)如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,是AC的中点,已知,.(1)求证:OD//平面VBC;(2)求证:AC⊥平面VOD;(3)求棱锥的体积.参考答案:证明:(1)∵O、D分别是AB和AC的中点,∴OD//BC.

(1分)又面VBC,面VBC,∴OD//平面VBC.

(3分)(2)∵VA=VB,O为AB中点,∴.

(4分)连接,在和中,,∴≌DVOC,∴=DVOC=90°,

∴.

(5分)∵,平面ABC,平面ABC,∴VO⊥平面ABC.(6分)∵平面ABC,∴.

(7分)又∵,是的中点,∴.

(8分)∵VOì平面VOD,VDì平面VOD,,∴AC平面DOV.

(9分)(3)由(2)知是棱锥的高,且.(10分)又∵点C是弧的中点,∴,且,∴三角形的面积,

(11分)∴棱锥的体积为,

故棱锥的体积为.

(12分)21.如图,直线PA为圆O的切线,切点为A,直径BC⊥OP,连接AB交PO于点D.(1)证明:PA=PD;(2)求证:PA?AC=AD?OC.参考答案:【考点】与圆有关的比例线段.【专题】直线与圆.【分析】(1)连结OA,由已知条件推导出∠PAD=∠PDA,即可证明PA=PD.(2)连结OA,由已知条件推导出△PAD∽△OCA,由此能证明PA?AC=AD?OC.【解答】(1)证明:连结AC,∵直径BC⊥OP,连接AB交PO于点D,BC是直径,∴∠C+∠B=90°,∠ODB+∠B=9

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论