下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省德阳市中江县城北中学2022年高二数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若曲线与在处的切线互相垂直,则等于(
).A.
B.
C.
D.或0参考答案:A略2.如图,在一个倒置的正三棱锥容器内,放入一个钢球,钢球恰好与棱锥的四个面都接触上,经过棱锥的一条侧棱和高作截面,正确的截面图形是(
)
参考答案:B3.圆在点处的切线方程为(▲)
A.
B.C.
D.参考答案:B略4.已知f(x)定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)<﹣xf′(x),则不等式f(x+1)>(x﹣1)f(x2﹣1)的解集是()A.(0,1) B.(1,+∞) C.(1,2) D.(2,+∞)参考答案:D【考点】6B:利用导数研究函数的单调性.【分析】由题意构造函数g(x)=xf(x),再由导函数的符号判断出函数g(x)的单调性,不等式f(x+1)>(x﹣1)f(x2﹣1),构造为g(x+1)>g(x2﹣1),问题得以解决.【解答】解:设g(x)=xf(x),则g'(x)=[xf(x)]'=x'f(x)+xf'(x)=xf′(x)+f(x)<0,∴函数g(x)在(0,+∞)上是减函数,∵f(x+1)>(x﹣1)f(x2﹣1),x∈(0,+∞),∴(x+1)f(x+1)>(x+1)(x﹣1)f(x2﹣1),∴(x+1)f(x+1)>(x2﹣1)f(x2﹣1),∴g(x+1)>g(x2﹣1),∴x+1<x2﹣1,解得x>2.故选:D.5.若,则称A是“伙伴关系集合”,在集合的所有非空子集中任选一个集合,则该集合是“伙伴关系集合”的概率为(
)
A.
B.
C.
D.参考答案:A略6.有一个几何体的三视图及其尺寸如下(单位:cm),则该几何体的表面积和体积为(
)A.
B.
w.w.w.k.s.5.u.c.o.m
C.
D.以上都不正确参考答案:A7.某程序框图如图所示,若输出的S=57,则判断框内为(
)
(A)k>4?
(B)k>5?
(C)k>6?
(D)k>7?
参考答案:A略8.关于函数有下述三个结论:①函数f(x)的最小正周期为2π;②函数f(x)的最大值为2;③函数f(x)在区间上单调递减.其中,所有正确结论的序号是(
)A.①② B.①③ C.②③ D.①②③参考答案:B【分析】利用正弦型函数的周期公式可判断命题①的正误;利用正弦型函数的最值可判断命题②的正误;利用正弦函数的单调性可判断命题③的正误.综合可得出结论.【详解】对于命题①,函数的最小正周期为,命题①正确;对于命题②,函数的最大值为,命题②错误;对于命题③,当时,,所以,函数在区间上单调递减,命题③正确.故选:B.【点睛】本题考查正弦型三角函数基本性质的判断,涉及正弦型函数的周期、最值和单调性,考查推理能力,属于基础题.9.复数=()A.i B.﹣i C.1﹣i D.1+i参考答案:A【考点】复数代数形式的乘除运算.【分析】按照复数除法的运算法则,分子分母同乘以1+i,计算化简即可.【解答】解:==i.故选A.10.已知平面平面,直线,直线,且b与c相交,则a和b的位置关系是(
)A.平行
B.相交
C.异面
D.上述三种都有可能参考答案:C若a与平行,因为,所以,与与c相交矛盾,所以A错;若a和相交,因为直线直线,平面平面,则a和都和c相交且在同一点处,这与矛盾,所以B错;因为两条直线的位置关系有平行,相交,异面这三种情况,故a和只能异面故选C
二、填空题:本大题共7小题,每小题4分,共28分11.在平面几何里,有勾股定理:“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的面面积与底面面积间的关系。可以得出的正确结论是:“设三棱锥A—BCD的三个侧面ABC、ACD、ADB两两相互垂直,则
”.参考答案:略12.椭圆的一个顶点与两个焦点构成等边三角形,则离心率e=________。参考答案:略13.直线的斜率为k,若﹣1<k<,则直线的倾斜角的范围是
.参考答案:14.若“”是“”的充分而不必要条件,则实数的取值范围是__________。参考答案:15.描述算法的方法通常有:(1)自然语言;(2)
;(3)伪代码.参考答案:流程图16.已知正方体内有一个球与正方体的各个面都相切,经过和BB1作一个截面,正确的截面图形是
.
参考答案:17.已知球的半径,则它的体积_________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知抛物线C:y2=4x与直线y=2x﹣4交于A,B两点.(1)求弦AB的长度;(2)若点P在抛物线C上,且△ABP的面积为12,求点P的坐标.参考答案:【考点】直线与圆锥曲线的关系;三角形的面积公式;两点间的距离公式.【分析】(1)利用弦长公式即可求得弦AB的长度;(2)设点,利用点到直线的距离公式可表示出点P到AB的距离d,S△PAB=??d=12,解出即可;【解答】解:(1)设A(x1,y1)、B(x2,y2),由得x2﹣5x+4=0,△>0.由韦达定理有x1+x2=5,x1x2=4,∴|AB|==,所以弦AB的长度为3.(2)设点,设点P到AB的距离为d,则,∴S△PAB=??=12,即.∴,解得yo=6或yo=﹣4∴P点为(9,6)或(4,﹣4).【点评】本题考查直线与圆锥曲线的位置关系、点到直线的距离公式及三角形的面积公式,考查学生的计算能力,属中档题.19.已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,求抛物线的方程。参考答案:设抛物线的方程为,则消去得,则20.(本小题满分12分)“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(下面的临界值表供参考)0.100.050.0100.0052.7063.8416.6357.879(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取2名幸运选手,求2名幸运选手中恰有一人在20~30岁之间的概率.(参考公式:.其中.)正误年龄正确错误合计20---30
30---40
合计
参考答案:(Ⅰ)列联表:年龄、正误正确错误合计20---3010304030---40107080合计20100120
…………3分
所以有90%的把握认为猜对歌曲名称与否和年龄有关.
-----6分(Ⅱ)设事件A为3名幸运选手中至少有一人在20~30岁之间,由已知得20~30岁之间的人数为2人,30~40岁之间的人数为4人,
…………8分记20~30岁之间的2人a,b,30~40岁之间的4人数为1.2.3.4;(a,b),(a,1),(a,2),(a,3),(a,4),(b,1),(b,2),b,3),(b,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共15种可能,
…………9分事件A的结果有8种,
………10分则
………………12分21.已知函数f(x)=-ln(x+m).(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0.参考答案:(1)f(x)在(-1,0)上是减函数;在(0,+∞)上是增函数(2)见解析【详解】(1)f′(x)=..由x=0是f(x)的极值点得f'(0)=0,所以m=1.于是f(x)=ex-ln(x+1),定义域为(-1,+∞),f′(x)=.函数f′(x)=在(-1,+∞)上单调递增,且f'(0)=0,因此当x∈(-1,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.所以f(x)在(-1,0)上单调递减,在(0,+∞)上单调递增.(2)当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时,f(x)>0.当m=2时,函数f′(x)=在(-2,+∞)上单调递增.又f'(-1)<0,f'(0)>0,故f'(x)=0在(-2,+∞)上有唯一实根x0,且x0∈(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西华师范大学《商务文案设计》2023-2024学年第一学期期末试卷
- 西安理工大学《跨文化商务交际导论》2023-2024学年第一学期期末试卷
- 2024年高铁站区建筑劳务清包合同
- 2024版条码设备维护保养协议版
- 2024房地产买卖合同(含装修及配套设施)
- 二零二五年度跨境电商代理运输服务协议
- 2024版禁牧管理员合同
- 2024版二人合作创业开店协议要览版B版
- 二零二五年度能源行业核心技术人员保密及竞业限制合同2篇
- 二零二五版国有企业法人借款合同合规审查要点3篇
- 电商公司售后服务管理制度
- 火灾应急处理课件
- 创新者的逆袭3:新质生产力的十八堂案例课-记录
- 2024年河南省公务员考试《行测》真题及答案解析
- 2022-2024北京初三二模英语汇编:话题作文
- 人教版八年级英语上册Unit1-10完形填空阅读理解专项训练
- 2024年湖北省武汉市中考英语真题(含解析)
- GB/T 44561-2024石油天然气工业常规陆上接收站液化天然气装卸臂的设计与测试
- 《城市绿地设计规范》2016-20210810154931
- 网球场经营方案
- 2024年公司保密工作制度(四篇)
评论
0/150
提交评论