版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程的解法教学目标1.初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如C.2册,册的方程;x-a)= >U).初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;.掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;.会用因式分解法解某些一元二次方程。通过对一元二次方程解法的教学,使学生进一步理解'降次〃的数学方法,进一步获得对事物可以转化的认识。教学重点和难点重点:一元二次方程的四种解法。难点:选择恰当的方法解一元二次方程。教学建议:一、教材分析:.知识结构:一元二次方程的解法Z 反工柘士」直接开平方法公式法(配方法, [公式法、因式分解法.重点、难点分析(1)熟练掌握开平方法解一元二次方程用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。
如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程&^,小不口1和方程仃Z就就可x=27 (2x-5)=1 (3x-4)=(2犬+3)以直接开平方法求解,在开平方时注意取正、负两个平方根。配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系{x+m)=n数一半的平方这两个关键步骤。(2)熟记求根公式(2)熟记求根公式4G。)和公式中字母的意义在使用求根公式时要注意以下三点:1)把方程化为一般形式,并做到厘、占、二之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。2)把一元二次方程的各项系数0、g、二代入公式时,注意它们的符号。3)当 时,才能求出方程的两根。b-4ac>0(3)抓住方程特点,选用因式分解法解一元二次方程如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。二、教法建议.教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质..注意培养应用意识.教学中应不失时机地使学生认识到数学源于实践并反作用于实践.教学设计示例教学目标.使学生知道解完全的一元二次方程ax2+bx+c=0(a#0,b#0,*0)可以转化为适合于直接开平方法的形式(x+m)2=n;.在理解的基础上,牢牢记住配方的关键是‘添加的常数项等于一次项系数一半的平方”;.在数学思想方法方面,使学生体会“转化”的思想和掌握配方法。教学重点和难点重点:掌握用配方法解一元二次方程。难点:凑配成完全平方的方法与技巧。底教学过程设计一复习.完全的一元二次方程的一般形式是什么样的?(注意ar0).不完全一元二次方程的哪几种形式?(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a#0)).对于前两种不完全的一元二次方程ax2=03#0)和ax2+c=0(a#0),我们已经学会了它们的解法。特别是结合换元法,我们还会解形如(x+m)2=n(n20)的方程。例解方程:(x-3)2=4(让学生说出过程)。解:方程两边开方,得x-3=±2,移项,得x=3±2。所以x1=5,x2=1.(并代回原方程检验,是不是根).其实(x-3)2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。(把这个展开过程写在黑板上)TOC\o"1-5"\h\z(x-3)2=4, ①x2-6x+9=4, ②x2-6x+5=0. ③二新课.逆向思维我们把上述由方程①一方程②一方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m)2=n的形式。这个转化的关键是在方程左端构造出一个未知数的一次式的完全平方式(x+m)2。.通过观察,发现规律问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。(添一项+1)即(x2+2x+1)=(x+1)2.练习,填空:x2+4x+()=(x+)2; y2+6y+()=(y+)2.算理x2+4x=2x-2,所以添2的平方,y2+6y=y2+2y3,所以添3的平方。总结规律:对于x2+px,再添上一次项系数一半的平方,就能配出一个含未知数的一个次式的完全平方式。即2.+ “ ( “)口④x(让学生对④式的右边展开,体会括号内第一项与第二项乘积的2倍,恰是左边的一次项,括号内第二项的平方,恰是配方时所添的常数项)项固练习(填空配方)£+工+( — )2;(答上通堆右边为匕十打)一+呆+( )”,+ )2;(答:左边填木右边刈丁+十力JI-2+yst+( )=(T+ )";(答:金边酢右地为Ch+/+/?)+( )二(q+ )2.(香:左地埴/,右边为小十芍,))总之,左边的常数项是一次项系数一半的平方。问:如果左边的一次项系数是负数,那么右边括号里第二项的正负号怎么取?算理是什么?巩固练习(填空配方)x2-bx+()=(x-)2; x2-(m+n)x+()=(x-)2.《一元二次方程的解法》教学设计学习目标1、会用因式分解法解一元二次方程2、能根据一元二次方程的特征,选择适当的求解方法,体会解决问题的灵活性和多样性学习重、难点重点:因式分解法解一元二次方程难点:将方程的右边化为零后,对左边进行正确的因式分解学习过程:一、情境创设用不同的方法解方程:x2-x=0?二、探索活动1、你能用几种方法解方程X2-X=0?本题既可以用配方法解:也可以用公式法来解:但由于公式法比配方法简单,一般选用公式法来解。还有其他方法可以解吗?(参看教科书P91思考与探索)
仔细观察方程的左边,可以发现这个等式的左边有公因式X,这时可把x提出来,左边即为两项的乘积,我们知道:两个因式的乘积等于0,则这两个因式为零,这样,就把一元二次方程降为一元一次方程,此时,方程即可解。这种解一元二次方程的方法叫做因式分解法。2、下面哪些方程,用因式分解法求解比较简便?(1)(2x—1)2-1=0 (2)(x-1)2-18=0(3) 3(x-5)2=2(5一x)三、例题教学例 1解下列方程:⑴X2=—4x ⑵x+3—x(x+3)=0分析:第⑴小题先化为一般形式,再提取公因式分解因式解之;第⑵小题可以将(x+3)作为一个整体,提取公因式解之。例2解方程(2x-1)2-x2=0分析:方程的左边可以用“平方差公式”分解因式,将之分解为两个一次因式的积,从而解之。思考:在解方程(x+2)2=4(x+2)时,在方程两边都除以(x+2),得x+2=4,于是解得x=2,这样解正确吗?为什么?(不正确,这样解使得方程少了一个解,原因在于两边同时除以的因式(x+2)可能为0,而方程两边不可以同时除以0)四、课堂练习人七练习八⑴⑶⑸ 2、⑴五、课堂小结如何选用解一元二次方程的方法?六、作业P92 练习1、(2)(4)(6) 2(2) (用因式分解法解)七、教后感课堂检测用因式分解法解方程:(2)3x(x-2)=x-2(x-1)24=09x2(2)3x(x-2)=x-2(x-1)24=09x2-(x-1)2=0初三复习《一元二次方程的的解法一因式分解法》教学设计西安市第46中学王俭妮王爱武一、教学内容分析本节课选自九年级上册《一元二次方程的的解法》一章,在初中数学新课程标准中,关于一元二次方程的要求是:理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。课本重点讲配方法,因为它是初中需要掌握的三种重要的数学方法之一。对九年级的学生来说,部分学生会进入高中继续学习,但高中数学对学生的要求会更高,教材中许多题目用因式分解法比较简单,虽然都可以用万能法一公式法解。作为老师也比较矛盾,一方面不能增加学生的负担,另一方面还要为学生的进一步发展考虑,于是,我和王爱武老师沟通并合作设计了这节课,不到之处敬请批评指正。二、学情分析与学法指导对于一元二次方程的解法学生基本掌握。大多数学生喜欢用求根公式,但存在的问题是部分学生根式的化简不熟练导致方程的求解不彻底。在本节初三复习课中,结合学生的实际,让学生通过复习教材,完成课前导学知识,逐步启发、引导学生课前自主预习、小组合作学习.。三、设计意图.设计课前导学旨在引导学生逐步养成自主预习的学习习惯,有针对性的学习课本;.设计答疑解惑环节旨在结合学生自主预习中找出的疑惑点,更有针对性的解答学生的疑惑;.设计回顾反思环节旨在逐步引导学生及时总结规律方法,逐步养成解题后反思的学习习惯。.设计补充十字相乘法旨在渗透初高中衔接的相关内容。四、教学三维目标知识与技能:.复习因式分解的几种方法;.学会用因式分解的几种方法解一元二次方程;
.了解十字相乘法,体会它实质是二项式乘法的逆过程;.学习含字母的因式的分解。过程与方法:通过课前导学及时复习因式分解,在课堂探究中让学生进一步体会因式分解法解一元二次方程的过程及特点。情感态度价值观:通过课前导学培养学生自学的习惯,通过解含字母的一元二次方程,给学生渗透分类讨论的数学思想方法。五、教学重点、难点:重点:用因式分解的几种方法解一元二次方程难点:对十字相乘法的理解,含字母的一元二次方程的解法六、教学过程课前导学(落实基础)一、基础梳理1.学过的因式分解有哪几种1.学过的因式分解有哪几种a+g£=oa'-bA=f+{p+q)x+pq=(x-也於3-8英=00二、课前热身一把下列各式因式分解:裂2.16a22.16a2+4工+;”4才+9+3/+3工+Jfi工口一5工+8裂9 43„-工)-2(工-旷5.x"-(a+Z?jx+ah前习中存在的疑惑:全黑朝究(能力提升)Q1、p方法:布卜组提交预习中存在的疑问,由其他组学生或教师有针对性地答疑口—2、典例分析¥例1.解下列方程:〃■(1)-a2--=0 (.2).16x2+4x+-=0^9 4 4解法略§主要由学生完成)…例2.解下列方程:一U)x2-3x+2=0 (2)x2-5x+6=0^解「⑴(配方法)方程变形为3.1. 3 1x--=—题x--=--+J■ 22- 2终此方程的解为工1=2 町=1炉(求根公式)F=lb=-3-x=2直接代人公式求解q(十字相乘法)如图L将二次项/分解成图中的两个工的积,再将常数项才蓊解成-工与-2的乘积,而图中的对角线上的两小数乘积的和为-女工就是/-三工+2中的一次项,所说明:今后在分解与本例类似的二次三曲式时,说明:今后在分解与本例类似的二次三曲式时,2所示).F㈢)十字相乘如图3方程的解为工1=2斤=34说明:十字相乘法是二次三曲式分解因式的一种常用方法,它是先将二次三项式的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法)然后按斜线交叉相乘、再相加,若有7则有,否则,需交换位置再试,若仍不行,再换另一组,用同样的方法试墟,直到找到合适的为止-一例3解下列关于x的方程裂:<1)/+也+1)工+口=0J2)工--,(沙:+1”+明3=0+J解:[i)..方程等价于0+2我工+1)=0J当值=一1时,方程的解为犬]=/=一1,当白。一1对,方程的解为工1=一1 x2=-a+-,鬻2)方程等价于0-1)(工一1)=0"老师引导学生仿照111对参数明进行讨论裂说明:在这两个题中,方程解的情况随着参数直陶取值的变化而变化,于是,在解题过程中,需要对参数的取值情况进行讨论,这一方法叫做分类讨论..芬类讨论这一思想方法是高中数学中一个非常重要的方法,在专后的解题中会经常地运用这一方法来解决问题.炉3、反馈矫正一解节列关于工的方程at1,):x-2-x(x-2)=0书(2)x2-5x-6=0^(3)x2+4x-12=0^(4。x2-llx+18=0^(5)工―2=0〃(E)#-一»+ =0+J(7)x'-(4+l)x+q=0"说明:反馈矫正可以根据学生课前预习与课堂学习的实际情况调整为课后巩固练习*4、回糜与反思¥方法:在教师的引导下由学生总结运用因式分解解方程的方法、技巧并相互补充#易错反思:七、课后反思
在上《一元二次方程的的解法》复习课时,因为时间关系和学生的基础,部分知识已遗忘的情况下,要求学生一步一个脚印,扎扎实实搞好基础知识的复习。这几节课采用的方法是预习与讲练结合的方法,让学生自己先复习,因为复习课讲的内容基本上是学生已学过的知识,布置学生预习,设计课前导学、答疑解惑可以发挥学生的主动性。学生通过预习,课前导学的演练,加深了对已有知识的理解,在课堂探究时老师讲解典例分析,例题的选择要有针对性。即要针对教学目标、针对知识点、针对学生的学习现状。教师以提问填空的形式归纳知识点,讲透知识点的运用,应注重基础知识的过关,在复习过程中,还要采取一些必要的措施来巩固和增强复习效果。根据复习内容,布置适量的难度适中的练习;在练习中进一步形成知识结构,提高学生运用知识解决问题的能力,发展学生的思维能力。在练习时要注意控制难题,把练习的重点放在重要和关键的知识点上。对复习过程中暴露出来的问题还要做到“有讲有练,精讲多练”,循序渐进,由浅入深,由简到繁。精心设计教学程序,合理安排讲练时间。这节课上之后,感觉到学生在理解和掌握解含参数的一元二次方程时有一些困难,部分学生不会对参数进行讨论,课堂气氛不活跃,在今后的教学中,可以适当穿插和高中联系密切的知识点,为学生的后续学习做渗透和铺垫。下来再利用一节课讲解和练习巩固。在今后的教学中,还应该在课前导学设计时,考虑到不同层次的学生一元一次方程的解法教案课题:一元二次方程的解法教学目标.初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如lx—<7lx—<7r=6(&>0)的方程..初步掌握用配方法解一元二次方程,会用配方法解方程..掌握一元二次方程的求根公式的推导,会运用求根公式解一元二次方程..通过对一元二次方程解法的教学,领悟一元二次方程的应用及意义,进一步了解数学与实际生活紧密联系.教学模式引导探究,讲练结合.教学重点和难点重点:一元二次方程三种解法.难点:运用恰当的方法解一元二次方程.教学过程.知识回顾:完全平方公式
试一试,做四道关于完全平方公式的题目..知识结构:一元二次方程的三种解法dm引用例题导出一元二次方程的直接开平方法、配方法和公式法.dm1)一桶油漆可刷的面积为1500 ,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?让学生进行小组讨论,分析、总结。解:由于10个正方体形状的盒子是相同的,则10个盒子的面积也是相同的.设正方体形状的盒子的棱长为又由于10个正方体形状的盒子的总面积是1500dm则可设方程又由于10个正方体形状的盒子的总面积是1500dm则可设方程10x6x2-1500由此可得,x=±5这种方法叫直接开平方法.2)怎样解方程'+6x+92)怎样解方程'+6x+9=2解:方程:*+6x+9=2左边可化为完全平方式.则这个方程化。进行降次,则方程的解为而=-则方程的解为而=-3+#,通过配成完全平方形式来解一元二次方程的方法,叫配方法.3)通过例题总结,方程总可以化成的形式.4)的根,从而得出求根公式3)通过例题总结,方程总可以化成的形式.4)的根,从而得出求根公式用公式法解一元二次方程的一般步骤:(1)把方程化成一般形式.并写出a,b,c的值.(2)求出b2-4ac的值.(3)代入求根公式:(a#0,b2-4ac>0)(4)写出方程的解:5(a#0,b2-4ac>0)(4)写出方程的解:5)作业:想一想,m取什么值时,方方十(2加++生T—4=口有两个相等的实数解?.重点、难点分析(1) 熟练掌握开平方法解一元二次方程
用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法.如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或
完全平方式,就可以直接开平方法求解,在开平方时注意取正、负两个平方根.配方法解一元二次方程,是利用完全平方公式,把一般形式的一元二次方程,转化为的形式求解.配方时要注意把二次项系数化为1及方程两边都加上一次项系数一半的平(2)熟记求根公式方(2)熟记求根公式方.同时注意以下三点:1)把方程化为一般形式,并做到a、b、c之间没有公因数,且二次项系数为正整数,这样带入公式计算较为简便.3)2)把一元二次方程的各项系数a、b、c代入公式时,注意符号3)时,方程有解.这节课共学习了三种解一元二次方程的方法:直接开平方法、配方法、公式法.解方程时,要认真观
察方程的特征,选用适当的方法求解.教学小结
.教学方法采用启发引导,讲练结合的授课方式,发挥教师的主导作用,体现学生主体地位,学生通过自己一系列思维活动获取知识,启发诱导学生深入思考问题,培养学生思维灵活性、严谨性、深刻性等良好思维品质..培养学生数学知识的应用意识,在教学中不失时机地使学生认识到数学源于实践并反作用于实践.
完全平方公式:而事方2=完全平方公式:而事方2=(以+6)彳2)2ab+b2=(6Z—6)\{Q试一试吧!(i)x+2x+_1_=(x+1)2\(2)d-8x+/_=(X-4>;(3)"+5>虫_=。+I>I21 ;―) /J_\2(4)y-f+^_=(y-:)这种解法叫做什么?直接开平方法V可先把等号左边化成完全平方式,再“降次,即XL,%」这种解法叫做什么?直接开平方法V可先把等号左边化成完全平方式,再“降次,即XL,%」5问题[一桶油漆可刷的面积为1500力南,李林用这桶油漆恰好刷完1。个同样的正方体形状的盒子的全部)外表面,你能算出盒子的棱长吗?解:设正方体的棱长为工而,.列方程10x6/2=1500■■■由此可得X”=25 <一一、经检验,5和-5是方程的根,但是棱长不能是负值,所以正方倒蝴潮Blu〜 L怎样解方程—+6x+9=2?化成两个一元一次方程如果方程能化成f=2或(mx+ny化成两个一元一次方程如果方程能化成f=2或(mx+ny=广的形式,堂上练习:像上面那样,通过配成完全平方形式来解一元二次方程的方法,叫做配方法.方程的根为8==3+“亍,归纳:那么可得/=土,p或mx+用=土P39.1 P45.2方程{+61+9=2的不边是完全平方形式,这个方程可以化成(x+3)2=z进行降次,得x+3二土石, x+12=0- x+12=0-64 768不知疲倦不知烦恼。有数量为总数八分之一再平方的大猴小猴,在树枝上不停地蹦跳;还有12只猴子摘果取乐,一边啼叫一边乱抛,树枝摇曳果遍地,林中猴子共多少?解:设林中猴子的总数为X得方程去括号,得整理,得方程两边同乘以64,得Y2-64x+12x64=0
解:设林中猴子的总数为X得方程去括号,得整理,得解:两边同乘a2bC八x+解:两边同乘a2bC八x+—x+—=0aa开平方,得 —b±4b2-4acx= 方程左边配方ax+bx+c=0的根c注:任何一个关于X的一元二次方程都可以i化成 i:我们未求一下方程ax2+bx+c=Q(以。0)(ar0,b2-4ac^0)用公式法解一元二次方程的一般步骤:-b±J求根公式:x=+±Jb2(ar0,b2-4ac^0)用公式法解一元二次方程的一般步骤:-b±J求根公式:x=+±Jb2-4ac(a卉0,b2-4ac^0)4、写出方程的解:军1=?, 1、把方程化成一般形式。并写出a,b,c的值.2、求出b工依c的值。3、代入求根公式:解:将方程化为一般式,得/+4l2=0-2±76y/?2-4£7c=42-4x1x(-2)=24-b+^b2-4ac —4+V24,原方程的解是一解解方程淤+4x=21、用公式法解下列方程:x2+1、用公式法解下列方程:x2+mx-2m2为已知常数)2、m取什么值时,方程x2+(2m+l)x+m2N=0有两个相等的实数解?元二次方程的解法说课稿各位老师,大家好!今天我说课的课题是一元二次方程的解法.下面我将从以下几个方面进行阐述:首先,我对本节教材进行简要分析.1.说教材本节内容是上海教育出版社出版的初中八年级数学课程标准实验教科书《数学》第一册第十七章第二节第一课时,属于数与代数领域的知识.在此之前,学生已学习了一元一次方程及整式的平方、开方、因式分解等,这为过渡到本节的学习起着铺垫的作用.本节内容是学生学过的一元一次方程的延续和拓展,又是后续研究高次方程的基础,它是整个方程研究中起着承上启下作用的核心知识之一.因此,在方程研究中,占据重要的不可替代的地位.本节课中解一元二次方程的方法是重点,选用恰当的方法解方程是难点,求根公式是关键,其理论依据是完全开平式.基于以上对教材的认识,根据数学课程标准的有效教学的基本理念,考虑到学生已有的认知结构与心理特征,制定如下的教学目标..说目标知识与技能:了解一元二次方程及解一元二次方程的三种解法;理解选用恰当的方法解方程的方法.过程与方法:利用回顾已学的相关知识,引导学生探索一元二次方程的一般形式,从例题中总结出解方程的方法,采用启发引导,讲练结合的授课方式,发挥教师的主导作用,体现学生主体地位,学生通过自己一系列思维活动获取知识,启发诱导学生深入思考问题,培养学生思维灵活性、严谨性、深刻性等良好思维品质.情感态度与价值观:让学生领悟一元二次方程的应用及意义,进一步了解数学与实际生活的紧密联系,培养学生数学知识的应用意识,在教学中不失时机地使学生认识到数学源于实践并反作用于实践.为突破重点、突破难点、抓住关键,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈设计思路..说教学方法教法选择与教学手段:基于学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、推广式的教学方法与手段,即引导探究、讲练结合的教学模式,其理论依据是数学与实践的联系,一元一次方程的推广.学法指导:教学中力求体现“问题情景---数学模型-----概念归纳”的模式.本节课借助多媒体辅助教学,充分利用多媒体演示中的生动性、灵活性,把图形的静变成动,增强直观性;指导学生通过直观形象的观察与思考,从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力..说教学过程在分析教材、确定教学目标、合理选择教法与学法的基础上,我预设的教学过程如下:1)回顾知识,温故知新回顾完全开平方式及一元一次方程的概念,为学习一元二次方程做铺垫.2)创设情景,引入新课因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知.通过多
媒体演示中“油漆漆盒子”的实例,并对其进行分析,同时帮助学生从实际问题中提炼出数学问题,初步培
养学生的空间概念和抽象能力.情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过
的,从而激发学生的求知欲望,顺利地进入新课.
3)启发探究,获取新知在这个环节的教学中利用多媒体出示几个实例,引导学生来观察、分析问题并列方程.在学生列出方程后,对所列方程进行整理,并引导学生分析所列方程的特征,选用恰当的方法解方程.在教学中将学生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 域名及其管理
- 肩关节离断术后护理
- 肘外翻病人的护理
- 2024年幼儿园家长工作总结报告
- 2024年放射科年终工作总结
- EHS管理知识培训
- 2024年度软件开发与维护合同(2024版)
- 氢气安全知识培训
- 玉林师范学院《电子商务概论》2021-2022学年第一学期期末试卷
- 2024年度企业间广告位租赁合同
- 服务质量保障措施及进度保障措施
- 奇瑞终身质保合同范本
- 北师大版四年级数学上册第一单元《认识更更大的数》(大单元教学设计)
- 上睑下垂的护理
- 中药贴敷疗法
- 小学数学六年级下册期末测试卷含答案(综合题)
- 移变高低压培训(合订版)
- DZ∕T 0054-2014 定向钻探技术规程(正式版)
- 国内外供应链研究现状分析
- 中华优+秀传统文化智慧树知到期末考试答案章节答案2024年浙江金融职业学院
- 人体工程学课件
评论
0/150
提交评论