四川省雅安市中学2023年高三数学文下学期期末试卷含解析_第1页
四川省雅安市中学2023年高三数学文下学期期末试卷含解析_第2页
四川省雅安市中学2023年高三数学文下学期期末试卷含解析_第3页
四川省雅安市中学2023年高三数学文下学期期末试卷含解析_第4页
四川省雅安市中学2023年高三数学文下学期期末试卷含解析_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省雅安市中学2023年高三数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知

是()上是增函数,那么实数的取值范围是

A.(1,+)

B.

C.

D.(1,3)参考答案:C2.已知实数x,y满足,则的取值范围是

A.

B.

C.

D.

参考答案:A3.如图,椭圆的中心在坐标原点,交点在x轴上,为椭圆顶点,为右焦点,延长与交于点P,若为钝角,则该椭圆离心率的取值范围是A.

B.

C.

D.

参考答案:D4.过椭圆的左顶点作斜率为1的直线,与椭圆的另一个交点为,与轴的交点为。若,则该椭圆的离心率为

.A.

B.

C.

D.参考答案:C5.设,若函数在区间(-1,1)内有极值点,则的取值范围为(

)A.

B.

C.

D.参考答案:B6.在四边形ABCD中,=0,且,则四边形ABCD是()A.平行四边形 B.菱形 C.矩形 D.正方形参考答案:C【考点】相等向量与相反向量.【专题】计算题;转化思想;综合法;平面向量及应用.【分析】由=0,得AB⊥BC,由,得ABDC,由此能判断四边形ABCD的形状.【解答】解:在四边形ABCD中,∵=0,∴AB⊥BC,∵,∴ABDC,∴四边形ABCD是矩形.故选:C.【点评】本题考查四边形形状的判断,是基础题,解题时要认真审题,注意向量垂直和向量相等的性质的合理运用.7.某几何体的三视图如右图所示,则它的体积是(

)(A)

(B)(C)

(D)参考答案:A由三视图可知,该几何体是一个正四棱柱挖去一个圆锥,正四棱柱的体积为,圆锥的体积为,所以该几何体的体积为,选A.8.若将函数的图象向右平移个单位,所得图象关于轴对称,则的最小正值是A

B

C

D参考答案:C略9.若关于x的方程有五个互不相等的实根,则的取值范围是A.

B.

C.

D.

参考答案:D10.集合U={1,2,3,4,5,6},S={1,4,5},T={2,3,4},则S∩(?UT)等于(

)A.{1,4,5,6} B.{1,5} C.{4} D.{1,2,3,4,5}参考答案:B【分析】由集合,,由补集的运算有,又,再结合交集的运算即可得解.【详解】解:因为集合,,所以,又,所以,故选B.【点睛】本题考查了补集,交集的运算,重点考查了对交集、补集概念的理解能力,属基础题.二、填空题:本大题共7小题,每小题4分,共28分11.如图,在矩形中,点,分别在线段,上,且满足,,若,则

.参考答案:【知识点】平面向量基本定理【试题解析】因为

故答案为:12.若集合,,则A∩B=_________.参考答案:13.假设关于某设备的使用年限和所支出的维修费(万元)有如下的统计资料:使用年限x23456维修费用y2.23.85.56.57.0由资料可知y和x呈线性相关关系,由表中数据算出线性回归方程中的

据此估计,使用年限为10年时的维修费用是

万元.参考答案:12.3814.已知函数,,则的单调递增区间为

.参考答案:(或),根据正弦函数的单调性可得,解得得,又的单调递增区间为,故答案为或.

15.已知实数、、满足,,则的最大值为为_______.参考答案:16.命题:若x≥1,则x2+3x﹣2≥0的否命题为..参考答案:“若x<1,则x2+3x﹣2<0”略17.若函数=,则不等式的解集为

参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在平面直角坐标系中,已知曲线的参数方程为,(为参数).以坐标原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.(Ⅰ)当时,求曲线上的点到直线的距离的最大值;(Ⅱ)若曲线上的所有点都在直线的下方,求实数的取值范围.参考答案:(Ⅰ)直线的直角坐标方程为,曲线.∴曲线为圆,且圆心到直线的距离.∴曲线上的点到直线的距离的最大值为.(Ⅱ)∵曲线上的所有点均在直线的下方,∴对,有恒成立.即(其中)恒成立.∴.又,∴解得.∴实数的取值范围为.19.已知sin(-α)sin(+α)=-,α∈(,).(I)求sin2α的值;(II)求的值.参考答案:【分析】(I)利用同角三角函数的基本关系、诱导公式求sin2α的值.(II)利用同角三角函数的基本关系、二倍角公式求求得的值.【解答】解:(I),则,又∵,∴,∴.所以.(II)由(I)知,又,所以,所以.20.已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴(垂足为T),与抛物线交于不同的两点P,Q且.(I)求点T的横坐标;(II)若以F1,F2为焦点的椭圆C过点.①求椭圆C的标准方程;②过点F2作直线l与椭圆C交于A,B两点,设,若的取值范围.参考答案:解:(Ⅰ)由题意得,,设,,则,.由,得即,①…2分又在抛物线上,则,②联立①、②易得

……4分(Ⅱ)(ⅰ)设椭圆的半焦距为,由题意得,设椭圆的标准方程为,则

…5分将④代入③,解得或(舍去)

所以

……6分故椭圆的标准方程为

……7分(ⅱ)方法一:容易验证直线的斜率不为0,设直线的方程为将直线的方程代入中得:.…8分设,则由根与系数的关系,可得:

…9分因为,所以,且.将⑤式平方除以⑥式,得:由

所以

……………11分因为,所以,又,所以,故,令,所以

所以,即,所以.而,所以.

所以.

………………13分方法二:1)当直线的斜率不存在时,即时,,,又,所以

…………8分2)当直线的斜率存在时,即时,设直线的方程为由得

设,显然,则由根与系数的关系,可得:,

……9分

⑥因为,所以,且.将⑤式平方除以⑥式得:由得即故,解得

………10分因为,所以,又,故…11分令,因为

所以,即,所以.所以

……12分综上所述:.

……13分

略21.已知函数f(x)=sin(2x+)+sin(2x﹣)﹣cos2x+a(a∈R,a为常数).(1)求函数f(x)的最小正周期和单调增区间;(2)若函数f(x)的图象向左平移m(m>0)个单位后,得到函数g(x)的图象关于y轴对称,求实数m的最小值.参考答案:【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法;函数y=Asin(ωx+φ)的图象变换.【专题】计算题;综合题.【分析】(1)将函数f(x)用和角与差角的正弦公式展开,合并同类项后再用辅助角公式,可得f(x)=,再结合函数y=Asin(ωx+φ)的图象与性质,可得最小正周期和单调增区间;(2)按题中方法平移后,得到g(x)=,当时,g(x)为偶函数且图象关于y轴对称,再k=0,得m的最小正值为.【解答】解:(1)=2sin2xcos﹣cos2x+a=.…(3分)∴f(x)的最小正周期为…(4分)令,得,∴函数f(x)单调递增区间为.…(7分)(2)函数f(x)的图象向左平移m(m>0)个单位后得=,要使g(x)的图象关于y轴对称,只需…(9分)即,取k=0,得m的值为为最小正值∴m的最小值为.…(12分)【点评】本题将一个函数化简整理为y=Asin(ωx+φ)+k,并求它的单调性和周期性,着重考查了三角函数中的恒等变换应用和函数y=Asin(ωx+φ)的图象变换等知识点,属于中档题.22.(本小题满分10分)选修4-4

坐标系与参数方程

在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴建立极坐标系,已知直线,曲线为参数)(1)将直线化为直角方程,将曲线C化为极坐标方程;(2)若将直线向上平移m个单位后与曲线C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论