版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若关于的方程有两个相等的根,则的值为()A.10 B.10或14 C.-10或14 D.10或-142.下图中几何体的左视图是()A. B. C. D.3.正六边形的周长为6,则它的面积为()A. B. C. D.4.下列函数是关于的反比例函数的是()A. B. C. D.5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30° B.40° C.45° D.50°6.在Rt△ABC中,∠C=900,∠B=2∠A,则cosB等于()A. B. C. D.7.如图,四边形内接于,延长交于点,连接.若,,则的度数为()A. B. C. D.8.下列事件中,是随机事件的是()A.任意画两个圆,这两个圆是等圆 B.⊙O的半径为5,OP=3,点P在⊙O外C.直径所对的圆周角为直角 D.不在同一条直线上的三个点确定一个圆9.某企业五月份的利润是25万元,预计七月份的利润将达到49万元.设平均月增长率为x,根据题意可列方程是()A.25(1+x%)2=49 B.25(1+x)2=49C.25(1+x2)=49 D.25(1-x)2=4910.用配方法解方程2x2-x-2=0,变形正确的是()A. B.=0 C. D.11.如图,在平面直角坐标系中,点P在函数y=(x>0)的图象上从左向右运动,PA∥y轴,交函数y=﹣(x>0)的图象于点A,AB∥x轴交PO的延长线于点B,则△PAB的面积()A.逐渐变大 B.逐渐变小 C.等于定值16 D.等于定值2412.在平面直角坐标系中,抛物线经过变换后得到抛物线,则这个变换可以是()A.向左平移2个单位 B.向右平移2个单位C.向左平移8个单位 D.向右平移8个单位二、填空题(每题4分,共24分)13.如果等腰△ABC中,,,那么______.14.如图,在反比例函数的图象上有点它们的横坐标依次为2,4,6,8,10,分别过这些点作轴与轴的垂线,图中所构成的阴影部分的面积从左到右依次为则点的坐标为________,阴影部分的面积________.15.如图,在平面直角坐标系中,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(4,1)在AB边上,把△CDB绕点C旋转90°,点D的对应点为点D′,则OD′的长为_________.16.在Rt△ABC中,若∠C=90°,cosA=,则sinA=________.17.反比例函数的图象在第____________象限.18.两个相似三角形的面积比为,其中较大的三角形的周长为,则较小的三角形的周长为__________.三、解答题(共78分)19.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外无其它差别,其中红球有个,若从中随机摸出一个,这个球是白球的概率为.(1)求袋子中白球的个数;(2)随机摸出一个球后,不放回,再随机摸出一个球,请结合树状图或列表求两次都摸到相同颜色的小球的概率.20.(8分)某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?21.(8分)我市某旅行社为吸引我市市民组团去长白山风景区旅游,推出了如下的收费标准:如果人数不超过25人,人均旅游费用为800元;如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于650元,某单位组织员工去长白山风景区旅游,共支付给旅行社旅游费用21000元,请问该单位这次共有多少员工去长白山风景区旅游?22.(10分)如图,在某建筑物上,挂着“缘分天注定,悠然在潜山”的宣传条幅,小明站在点处,看条幅顶端,测得仰角为,再往条幅方向前行30米到达点处,看到条幅顶端,测得仰角为,求宣传条幅的长.(注:不计小明的身高,结果精确到1米,参考数据,)23.(10分)如图,一次函数的图象和反比例函数的图象相交于两点.(1)试确定一次函数与反比例函数的解析式;(2)求的面积;(3)结合图象,直接写出使成立的的取值范围.24.(10分)如图,BD、CE是的高.(1)求证:;(2)若BD=8,AD=6,DE=5,求BC的长.25.(12分)《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步面见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为多少步.26.矩形中,线段绕矩形外一点顺时针旋转,旋转角为,使点的对应点落在射线上,点的对应点在的延长线上.(1)如图1,连接、、、,则与的大小关系为______________.(2)如图2,当点位于线段上时,求证:;(3)如图3,当点位于线段的延长线上时,,,求四边形的面积.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据题意利用根的判别式,进行分析计算即可得出答案.【详解】解:∵关于的方程有两个相等的根,∴,即有,解得10或-14.故选:D.【点睛】本题考查的是根的判别式,熟知一元二次方程中,当时,方程有两个相等的两个实数根是解答此题的关键.2、D【分析】根据左视图是从左面看到的图形,即可.【详解】从左面看从左往右的正方形个数分别为1,2,故选D.【点睛】本题主要考查几何体的三视图,理解左视图是从左面看到的图形,是解题的关键.3、B【分析】首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为6,即可求得BC的长,继而求得△OBC的面积,则可求得该六边形的面积.【详解】解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=×360°=60°,∵OB=OC,∴△OBC是等边三角形,∵正六边形ABCDEF的周长为6,∴BC=6÷6=1,∴OB=BC=1,∴BM=BC=,∴OM=,∴S△OBC=×BC×OM=,∴该六边形的面积为:.故选:B.【点睛】此题考查了圆的内接六边形的性质与等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.4、B【分析】根据反比例函数的定义进行判断.【详解】A.,是一次函数,此选项错误;B.,是反比例函数,此选项正确;C.,是二次函数,此选项错误;D.,是y关于(x+1)的反比例函数,此选项错误.故选:B【点睛】本题考查了反比例函数的定义,解题的关键是掌握反比例函数的定义.5、A【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=120°,再根据三角形内角和定理可得答案.【详解】∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠ABO=(180°﹣120°)÷2=30°,故选A.【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6、B【详解】解:∵∠C=90°,∴∠A+∠B=90°,∵∠B=2∠A,∴∠A+2∠A=90°,∴∠A=30°,∴∠B=60°,∴cosB=故选B【点睛】本题考查三角函数值,熟记特殊角三角函数值是解题关键.7、B【分析】根据圆内接四边形的性质得到∠DAB,进而求出∠EAB,根据圆周角定理得到∠EBA=90°,根据直角三角形两锐角互余即可得出结论.【详解】∵四边形ABCD内接于⊙O,∴∠DAB=180°﹣∠C=180°﹣100°=80°.∵∠DAE=50°,∴∠EAB=∠DAB-∠DAE=80°-50°=30°.∵AE是⊙O的直径,∴∠EBA=90°,∴∠E=90°﹣∠EAB=90°-30°=60°.故选:B.【点睛】本题考查了圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.8、A【分析】随机事件就是可能发生也可能不发生的事件,根据定义即可判断.【详解】A.任意画两个圆,这两个圆是等圆,属于随机事件,符合题意;B.⊙O的半径为5,OP=3,点P在⊙O外,属于不可能事件,不合题意;C.直径所对的圆周角为直角,属于必然事件,不合题意;D.不在同一条直线上的三个点确定一个圆,属于必然事件,不合题意;故选:A.【点睛】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、B【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设利润的年平均增长率为x,然后根据已知条件可得出方程.【详解】解:依题意得七月份的利润为25(1+x)2,
∴25(1+x)2=1.
故选:B.【点睛】本题考查了一元二次方程的应用,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.10、D【解析】用配方法解方程2−x−2=0过程如下:移项得:,二次项系数化为1得:,配方得:,即:.故选D.11、C【分析】根据反比例函数k的几何意义得出S△POC=×2=1,S矩形ACOD=6,即可得出,从而得出,通过证得△POC∽△PBA,得出,即可得出S△PAB=1S△POC=1.【详解】如图,由题意可知S△POC=×2=1,S矩形ACOD=6,∵S△POC=OC•PC,S矩形ACOD=OC•AC,∴,∴,∴,∵AB∥轴,∴△POC∽△PBA,∴,∴S△PAB=1S△POC=1,∴△PAB的面积等于定值1.故选:C.【点睛】本题考查了反比例函数的性质以及矩形的面积的计算,利用相似三角形面积比等于相似比的平方是解决本题的关键.12、B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】y=(x+5)(x-3)=(x+1)2-16,顶点坐标是(-1,-16).y=(x+3)(x-5)=(x-1)2-16,顶点坐标是(1,-16).所以将抛物线y=(x+5)(x-3)向右平移2个单位长度得到抛物线y=(x+3)(x-5),故选B.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.二、填空题(每题4分,共24分)13、;【分析】过点作于点,过点作于点,由于,所以,,根据勾股定理以及锐角三角函数的定义可求出的长度.【详解】解:过点作于点,过点作于点,,,,AB=AC=3,BE=EC=1,BC=2,又∵,∴BD=,,∵,∴,故答案为:.【点睛】本题考查解直角三角形,涉及锐角三角函数的定义,需要学生灵活运用所学知识.14、(2,10)16【分析】将点P1的横坐标2代入函数表达式即可求出点P1纵坐标,将右边三个矩形平移,如图所示,可得出所求阴影部分面积之和等于矩形ABCP1的面积,求出即可.【详解】解:因为点P1的横坐标为2,代入,得y=10,∴点P1的坐标为(2,10),将右边三个矩形平移,如图所示,
把x=10代入反比例函数解析式得:y=2,∴由题意得:P1C=AB=10-2=8,
则S1+S2+S3+S4=S矩形ABCP1=2×8=16,
故答案为:(2,10),16.【点睛】此题考查了反比例函数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.15、3或【分析】由题意,可分为逆时针旋转和顺时针旋转进行分析,分别求出点OD′的长,即可得到答案.【详解】解:因为点D(4,1)在边AB上,
所以AB=BC=4,BD=4-1=3;
(1)若把△CDB顺时针旋转90°,
则点D′在x轴上,OD′=BD=3,
所以D′(3,0);∴;
(2)若把△CDB逆时针旋转90°,
则点D′到x轴的距离为8,到y轴的距离为3,
所以D′(3,8),∴;
故答案为:3或.【点睛】此题主要考查了坐标与图形变化——旋转,考查了分类讨论思想的应用,解答此题的关键是要注意分顺时针旋转和逆时针旋转两种情况.16、【分析】根据同一锐角的正弦与余弦的平方和是1,即可求解.【详解】解:,即,,或(舍去),.故答案为:.【点睛】此题主要考查了同角的三角函数,关键是掌握同一锐角的正弦与余弦之间的关系:对任一锐角,都有.17、二、四【解析】根据反比例函数中k=-5得出此函数图象所在的象限即可.【详解】∵反比例函数中,k=-5<0,∴此函数的图象在二、四象限,故答案为:二、四.【点睛】本题考查的是反比例函数图象的性质,熟知反比例函数当k<0时函数的图象在二、四象限是解答此题的关键.18、1【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三角形的周长为∴较小的三角形的周长为故答案为:1.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.三、解答题(共78分)19、(1)袋子中白球有4个;(2)【分析】(1)设白球有
x
个,利用概率公式得方程,解方程即可求解;(2)画树状图展示所有30种等可能的结果数,再找出两次摸到颜色相同的小球的结果数,然后根据概率公式求解.【详解】(1)设袋中白球有x个,由题意得:,解之,得:,经检验,是原方程的解,故袋子中白球有4个;(2)设红球为A、B,白球为,列举出两次摸出小球的所有可能情况有:共有30种等可能的结果,其中,两次摸到相同颜色的小球有14种,故两次摸到相同颜色的小球的概率为:.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.20、每件降价4元【详解】试题分析:设每件降价元,则可多售出5件,根据题意可得:化简整理得解得:经检验都是方程的解,但是题目要求x≤10∴x=36不符合题意,舍去即x=4答:每件降价4元.考点:一元二次方程的应用21、共有30名员工去旅游.【分析】利用总价=单价×数量求出人数时25时的总费用,由该费用小于21000可得出去旅游的人数多于25人,设该单位去旅游人数为x人,则人均费用为800﹣20(x﹣25)元,根据总价=单价×数量,即可得出关于x的一元二次方程,解之即可得出x的值,再代入人均费用中去验证,取使人均费用大于650的值即可得出结论.【详解】解:∵800×25=20000<21000,∴人数超过25人.设共有x名员工去旅游,则人均费用为800﹣20(x﹣25)元,依题意,得:x[800﹣20(x﹣25)]=21000,解得:x1=35,x2=30,∵当x=30时,800﹣20×(30﹣25)=700>650,当x=35时,800﹣20×(35﹣25)=600<650,∴x=35不符合题意,舍去.答:共有30名员工去旅游.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22、宣传条幅BC的长约为26米.【分析】先根据三角形的外角性质得出,再根据等腰三角形的判定可得BE的长,然后利用的正弦值求解即可.【详解】由题意得米(米)在中,,即(米)答:宣传条幅BC的长约为26米.【点睛】本题考查了等腰三角形的判定、解直角三角形等知识点,熟记正弦值的定义及特殊角的正弦值是解题关键.23、(1)反比例函数的解析式为,一次函数的解析式为;(2)8;(3)或.【分析】(1)将点A代入反比例函数中求出反比例函数的解析式,再根据反比例函数求出点B的坐标,最后将A和B的坐标代入一次函数解析式中求出一次函数的解析式;(2)求出一次函数与x轴的交点坐标,再利用割补法得到,即可得出答案;(3)根据图像判断即可得出答案.【详解】解:(1)∵在反比例函数的图象上,∴,则反比例函数的解析式为.将代入,得,∴.将两点的坐标分别代入,得解得则一次函数的解析式为.(2)设一次函数的图象与轴的交点为.在中,令,得,∴,即,则.(3)∵即一次函数的图像在反比例函数的图像的上方∴或.【点睛】本题考查的是一次函数与反比例函数的综合,难度不高,需要熟练掌握一次函数与反比例函数的图像与性质.24、(1)见解析;(2)BC=.【分析】(1)、是的高,可得,进而可以证明;(2)在中,,,根据勾股定理可得,结合(1),对应边成比例,进而证明,对应边成比例即可求出的长.【详解】解:(1)证明:、是的高,,,;(2)在中,,,根据勾股定理,得,,,,,,,.【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 远程医疗服务实施方案
- 2024年共谋发展:代理商合同
- 2024年可再生能源发电项目投资与合作开发合同
- 学术圈相关行业投资方案
- 2024年企业知识产权保护与许可使用合同
- 2024婚介网站服务合同样本:全方位红娘服务与会员婚恋指导条款
- 校园冲突调解与处理制度
- 煤焦油深加工产品行业相关投资计划提议
- 2024年商业空间墙地砖施工分包合同
- 桥梁外观缺陷的应急修复方案
- 线性微分方程的基本理论
- 2024年度医院放射科医务人员绩效评价报告课件
- 疼痛科建设可行性方案
- 目标管理之SMART原则
- 物联网践与探索
- 母子手册培训课件
- 2023年10月自考试题02213精密加工与特种加工
- 小儿先天性肾盂输尿管连接部梗阻疾病演示课件
- 新能源汽车电池介绍课件
- 2023-2024学年人教版化学九年级上册 第五单元《 化学方程式》复习教学设计
- 公司法人格否认制度
评论
0/150
提交评论