版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课堂精讲3.6直线和圆的位置关系(2)课后作业第三章
圆课前小测课前小测关键视点1.过半径外端且垂直于半径的直线是圆的
.知识小测2.已知⊙O的直径是10,圆心O到直线l的距离是5,则直线l和⊙O的位置关系是()A.相离 B.相交 C.相切 D.外切3.三角形的内心是()A.三边垂直平分线的交点 B.三条角平分线的交点C.三条高所在直线的交点 D.三条中线的交点
切线CB课前小测4.(2015广州)已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是()A.2.5 B.3 C.5 D.105.
⊙O的半径为5,直线l和点O的距离为d,若直线l与⊙O有公共点,则d的范围
.
C0≤d≤5课堂精讲【分析】(1)根据圆周角定理即可得到结论;(2)连接OE,通过△EAO≌△EDO,即可得到∠EDO=90°,于是得到结论.知识点1圆的切线的判定定理【例1】如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.课堂精讲(2)证明:连接OE.在△EAO与△EDO中,
,∴△EAO≌△EDO,∴∠EDO=∠EAO,∵∠BAC=90°,∴∠EDO=90°,∴DE与⊙O相切.(1)解;∵∠DBA=50°,∴∠DOA=2∠DBA=100°,
课堂精讲类比精炼1.如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.【解答】证明:(1)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ABC=30°,AB=4,∴BD=2,∵D是BC的中点,∴BC=2BD=4;课堂精讲(2)证明:连接OD.∵D是BC的中点,O是AB的中点,∴DO是△ABC的中位线,∴OD∥AC,则∠EDO=∠CED又∵DE⊥AC,∴∠CED=90°,∠EDO=∠CED=90°∴DE是⊙O的切线.课堂精讲【分析】作OD⊥AB于D,OE⊥BC于E,OF⊥AC于F,根据题意得出四边形OECF是正方形,得出OF=CF,由勾股定理得出AB==5,由内心的性质得出CF=OF=1,AF=AC﹣CF=3,由勾股定理求出OA,由直线与圆的位置关系,即可得出结果.知识点2三角形的内切圆及内心【例2】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的内心,以O为圆心,r为半径的圆与线段AB有交点,则r的取值范围是()A.r≥1 B.1≤r≤ C.1≤r≤ D.1≤r≤4课堂精讲【解答】解:作OD⊥AB于D,OE⊥BC于E,OF⊥AC于F,连接OA、OB,如图所示则四边形OECF是正方形,∴OF=CF=OE=CE,∵∠C=90°,AC=4,BC=3,∴AB==5,∵O是△ABC的内心,∴CE=CF=OF=OE=(AC+BC﹣AB)=1,∴AF=AC﹣CF=3,BE=BC﹣CE=2,课堂精讲当r=1时,以O为圆心,r为半径的圆与线段AB有唯一交点;当1<r≤时,以O为圆心,r为半径的圆与线段AB有两个交点;当
<r≤时,以O为圆心,r为半径的圆与线段AB有1个交点;∴以O为圆心,r为半径的圆与线段AB有交点,则r的取值范围是1≤r≤;故选:C.课堂精讲类比精炼2.(宁波一模)如果正三角形的内切圆半径为1,那么这个正三角形的边长为()A.2 B.2 C.3 D.B课后作业3.(2016凉山州模拟)在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以点C为圆心2cm长为半径的圆与AB的位置关系是()A.相交 B.相切
C.相离 D.不能确定C课后作业4.(2016安徽模拟)在△ABC中,∠ABC=60°,∠ACB=50°,如图,I是△ABC的内心,延长AI交△ABC的外接圆D,则∠ICD的度数是()A.50° B.55° C.60° D.65°5.(2015沈阳)如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm为半径作⊙A,当AB=
cm时,BC与⊙A相切.C6课后作业6.(湘潭)如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为
.7.在△ABO中,OA=OB=2cm,⊙O的半径为1cm,当∠AOB=
°时,直线AB与⊙O相切.8.边长为1的正三角形的内切圆半径为
.∠ABC=90°1209.(黔西南州)如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.能力提升(1)证明:连接OC,作OD⊥PB于D点.∵⊙O与PA相切于点C,∴OC⊥PA.∵点O在∠APB的平分线上,OC⊥PA,OD⊥PB,∴OD=OC.∴直线PB与⊙O相切;(2)解:设PO交⊙O于F,连接CF.∵OC=3,PC=4,∴PO=5,PE=8.∵⊙O与PA相切于点C,∴∠PCF=∠E.又∵∠CPF=∠EPC,∴△PCF∽△PEC,∴CF:CE=PC:PE=4:8=1:2.∵EF是直径,∴∠ECF=90°.设CF=x,则EC=2x.则x2+(2x)2=62,解得x=.则EC=2x=.能力提升11.(2015昆明)如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为半径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.(1)求证:直线FG是⊙O的切线;(2)若CD=10,EB=5,求⊙O的直径.挑战中考挑战中考解:(1)如图1,连接OE,∵OA=OE,∴∠EAO=∠AEO,∵AE平分∠FAH,∴∠EAO=∠FAE∴∠FAE=∠AEO,∴AF∥OE,∴∠AFE+∠OEF=180°,∵AF⊥GF,∴∠AFE=∠OEF=90°,∴OE⊥GF,∵点E在圆上,OE是半径,∴GF是⊙O的切线.挑战中考(2)∵四边形ABCD是矩形,CD=10,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化学方程式的书写计算和物质的构成教案
- 华银田径学期教案(全套)
- 文书模板-自来水安装报告申请书
- 国际民航日节日活动安全乘机指南飞机趣味问答课件
- 采购行业年终总结报告课件模板
- 2025《黑神话:悟空》高中语文试卷(1)含答案
- 2024届广东省珠海一中高三全真数学试题模拟试卷
- 残疾人合同管理制度
- 不嫁不娶协议书模板
- 毕业协议书户口
- 项目式课程与全课程设计
- 车间环境温湿度控制
- 小儿重症肺炎查房中的胸腔积液处理
- 新生入学校查验预防接种证培训课件
- 面部血管瘤的护理查房
- 新型脚手架材料研究
- 药物警戒质量管理规范试题
- 工程量自动计算结果表格(新增文字注释上标功能)
- 新课标视域下的小学数学大单元教学
- 幼儿园保教工作管理
- 产后乳房肿胀的护理课件
评论
0/150
提交评论