



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省四平市公主岭南崴子中学2023年高一数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数(a∈R)在区间(1,2)上有零点,则a的值可能是()A.-2 B.0C.1 D.3参考答案:A【分析】利用零点存在性定理逐个选项代入验证,即可得到答案.【详解】函数的图象在上是连续不断的,逐个选项代入验证,当时,,.故在区间(1,2)上有零点,同理,其他选项不符合,故选A.【点睛】本题考查了函数的零点与方程的根的应用,属于基础题.2.定义为n个正数p1,p2,…,pn的“均倒数”.若已知正数数列{an}的前n项的“均倒数”为,又bn=,则+++…+=()A. B. C. D.参考答案:C【考点】8E:数列的求和.【分析】直接利用给出的定义得到=,整理得到Sn=2n2+n.分n=1和n≥2求出数列{an}的通项,验证n=1时满足,所以数列{an}的通项公式可求;再利用裂项求和方法即可得出.【解答】解:由已知定义,得到=,∴a1+a2+…+an=n(2n+1)=Sn,即Sn=2n2+n.当n=1时,a1=S1=3.当n≥2时,an=Sn﹣Sn﹣1=(2n2+n)﹣=4n﹣1.当n=1时也成立,∴an=4n﹣1;∵bn==n,∴==﹣,∴+++…+=1﹣+﹣+…+﹣=1﹣=,∴+++…+=,故选:C3.如图所示,已知,,,,,,试用、、、、、表示下列各式:(1);(2);(3).参考答案:(1);(2);(3).【分析】将(1)、(2)、(3)中的每个向量利用共起点的向量的差向量表示,再利用平面向量加法和减法运算可得出结果.【详解】(1);(2);(3).【点睛】本题考查平面向量减法的三角形法则,以及平面向量的加减法运算,解题时要将问题的向量利用共起点的向量加以表示,属于基础题.4.已知向量若向量的夹角为锐角,则的取值范围为()A.
B.
C.
D.参考答案:D,若与的夹角为锐角θ,则有cosθ>0,即>0,且与不共线.由>0,得32λ>0,解得λ,当与共线时,有=λ,所以λ的取值范围是故选:.
5.已知全集,集合,下图中阴影部分所表示的集合为(
)A.
B.C.
D.参考答案:B6.函数(x>0)的零点所在的大致区间是(
)
A. B. C. D.参考答案:B略7.一水池有两个进水口和一个出水口,每个水口的进、出水速度如图甲、乙所示,某天0点到8点该水池的蓄水量如图丙所示,给出以下3个论断:①0点到4点只进水不出水;②4点到6点不进水只出水;③6点到8点不进水也不出水,其中一定正确的是(
)A.①②③
B.②③
C.①③
D.①参考答案:D由甲、乙两图可得进水速度为,出水速度为,结合丙图中直线的斜率可知,只进水不出水时,蓄水量增加的速度是,故①正确;不进水只出水时,蓄水量减少的速度是,故②不正确;两个进水一个出水时,蓄水量减少的速度是,故③不正确,故选D.
8.用一个平行于水平面的平面去截球,得到如图1所示的几何体,则它的俯视图是(
)参考答案:B9.在数列中,,,则等于
(
) A.2 B. C. D.1参考答案:A略10.利用斜二测画法可以得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形,以上结论正确的是
A.①②
B.①
C.③④
D.①②③④参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.在△ABC中,a=7,b=5,c=3,则A=
.参考答案:120°【考点】HR:余弦定理.【分析】在△ABC中,由a=7,b=5,c=3,利用余弦定理可得cosA=的值,从而得到A的值.【解答】解:在△ABC中,∵a=7,b=5,c=3,由余弦定理可得cosA==﹣,∴A=120°,故答案为120°.12.给定集合,若对于任意,都有且,则称集合为完美集合,给出下列四个论断:①集合是完美集合;②完美集合不能为单元素集;③集合为完美集合;④若集合为完美集合,则集合为完美集合.其中正确论断的序号是________________.参考答案:③略13.两平行直线,间的距离为
.参考答案:114.函数的定义域:参考答案:15.函数的最小正周期为_____;单调递增区间为_______.参考答案:
π
【分析】根据周期公式即可得周期。根据余弦函数的单调增区间即可得的单调递增区间。【详解】因为,所以,因为,所以增区间为16.的三内角A,B,C所对边长分别是,设向量,若,则角的大小为_____________.参考答案:17.已知函数若,则的值为
.参考答案:2三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知以点C(t,)(t∈R且t≠0)为圆心的圆经过原点O,且与x轴交于点A,与y轴交于点B.(1)求证:△AOB的面积为定值.(2)设直线2x+y﹣4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程.(3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.参考答案:【考点】直线和圆的方程的应用.【分析】(1)由题意可得:圆的方程为:=t2+,化为:x2﹣2tx+y2﹣=0.求出与坐标轴的交点,即可对称S△OAB.(2)由|OM|=|ON|,可得原点O在线段MN的垂直平分线上,设线段MN的中点为H,则C,H,O三点共线,可得t,即可对称圆C的方程.(3)由(2)可知:圆心C(2,1),半径r=,点B(0,2)关于直线x+y+2=0的对称点为B′(﹣4,﹣2),则|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,又点B′到圆上点Q的最短距离为|B′C|﹣r=﹣=2,进而得出.【解答】(1)证明:由题意可得:圆的方程为:=t2+,化为:x2﹣2tx+y2﹣=0.与坐标轴的交点分别为:A(2t,0),B.∴S△OAB==4,为定值.(2)解:∵|OM|=|ON|,∴原点O在线段MN的垂直平分线上,设线段MN的中点为H,则C,H,O三点共线,OC的斜率k==,∴×(﹣2)=﹣1,解得t=±2,可得圆心C(2,1),或(﹣2,﹣1).∴圆C的方程为:(x﹣2)2+(y﹣1)2=5,或(x+2)2+(y+1)2=5.(3)解:由(2)可知:圆心C(2,1),半径r=,点B(0,2)关于直线x+y+2=0的对称点为B′(﹣4,﹣2),则|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,又点B′到圆上点Q的最短距离为|B′C|﹣r=﹣=2,则|PB|+|PQ|的最小值为2.直线B′C的方程为:y=x,此时点P为直线B′C与直线l的交点,故所求的点P.19.参考答案:略20.已知函数,.求:(1)函数的最小值及取得最小值的自变量的集合;(2)函数的单调减区间.参考答案:解:
(1)当时,取得最大值.
此时,
即 函数的取得最小值的自变量的集合为.(2)由题意得
即
∴函数的单调减区间为略21.求证函数在(1,)上是增函数。参考答案:证明:任取,∈(1,+∞)且<
则f()-f()=(-)+
=(-)<0所以函数在是增函数.略22.若
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 超高压输电线舞动监测装置安装合同二零二五
- 2024监理工程师考试必考考点试题及答案
- 2024人力资源管理师考试的时间管理试题及答案
- 学生安全防范意识教育
- 黑龙江省伊春市嘉荫县第一中学2025届高考原创信息试卷语文试题(二)含解析
- 植物的光合反应机制分析试题及答案
- 黑龙江省哈尔滨市保国第二小学2025届数学三下期末教学质量检测模拟试题含解析
- 黑龙江省大兴安岭地区漠河县2025届三年级数学第二学期期末统考模拟试题含解析
- 黑龙江省绥化市明水县2024-2025学年数学五年级第二学期期末达标测试试题含答案
- 黑龙江省鸡西市2024-2025学年数学四年级第二学期期末学业质量监测模拟试题含解析
- 信用风险度量第六章-KMV模型课件
- 小学硬笔书法课教案(1-30节)
- 基于CAN通讯的储能变流器并机方案及应用分析报告-培训课件
- 医院清洁消毒与灭菌课件
- 消防安装工程施工方案Word版
- 软管管理规定3篇
- 关于对领导班子的意见和建议
- 【课件】学堂乐歌 课件-2022-2023学年高中音乐人音版(2019)必修音乐鉴赏
- 纳布啡在胃肠镜麻醉中的临床观察-课件
- 常用手术器械手工清洗
- 2022中西医执业医师实践技能疾病对照诊断内科
评论
0/150
提交评论